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PREFACE 

This essential text for the Maths HL course has been prepared 
to closely align with the current course. 

It has concise explanations, clear diagrams and calculator 

references. 

Appropriate, graded exercises are provided throughout. 

Also relating to International Perspectives and the Theory 

of Knowledge, it provides more than just the basics. It is an 

‘essential’ resource for those teachers and students who are 

looking for a reliable guide for their HL course. 

This is a re-worked and revised edition of the Higher Level 

text first published by IBID Press in 1997. 

2nd Edition published in 1999 

3rd Edition published in 2004 

4th Edition published 2012 

5th Edition 2017 — compact and better than ever! 

QR Codes 

There are many of these throughout the book. They link to 

additional resources that can be accessed through the internet 
using tablet, smart phone or computer. Readers will need to 

acquire a QR Reader ‘app' if they do not already have one. 

There are four main types of QR Files: 

Extra Questions 

Many exercises are provided with additional questions in pdf 

form. 

Answers 

Each chapter has a pdf version of the answers to all the 

questions (including 'extras’). 

Video 

You'Tube videos that relate to some examples. 

3dfiles 

These are Collada files (.dae). Readers may need to obtain 

Collada Reader to access these. 

Calculators 

Students who are thoroughly familiar with the capabilities of 

their model of calculator place themselves at a considerable 

advantage over students who are not. 

In preparing a text such as this, we cannot provide an 

exhaustive account of every place in which a calculator can 
help. Or, for that matter, an explanation of how each model 

works! 

This text uses examples from advanced Casio and Texas 

Instruments graphic calculators. 

‘The manufacturers all provide extensive 'manuals’. These can 

be intimidating. 

We suggest that a good strategy is to take each topic and, as 

you are learning it, take some time to discover your model's 

capability in that topic. 

For example, Section 1.3 deals with counting principles. It is 
highly likely your calculator will be very helpful here. A good 

strategy can be to 'Google' or ‘Bing' your model plus the topic. 

There are now a number of training videos available on 

YouTube. 

Answers 

Answers to the Exercises are available using QR codes or as a 

download from the publisher's website: 

www.ibid.com.au



N e T L e LT 
TABLE OF CONTENTS 
1.1 Sequences and Series 

1.2 Indices and Logarithms 
1.3 Counting Principles 
1.4 Mathematical Induction 
1.5 Complex Numbers (1) 

1.5 Complex Numbers (1) 

1.6 Complex Numbers (3) 
1.8 Complex Numbers (4) 

1.8 Systems of Linear Equations 

2.1 Functions 
2.2 Graphs 
2.3 Transformations 
2.4 Other Functions of Graphs 
2.5 Polynomials 
2.6 Quadratics 

2.7 Inequations 

3.1 Angle Measure 
3.2 Trigonometric Ratios 

3.3 Identities 
3.4 Trigonometric Functions 

3.5 Inverse Trigonometric Functions 

3.6 Trigonometric Equations 

3.7 Sine & Cosine Rules 

  

4.1 Introduction to Vectors 
4.2 Scalar Product 
4.3 Vector Equations 

4.4 Intersections 

4.5 Vector Product 
4.6 Planes 
4.7 Intersections 

5.1 Statistics 

5.2 Probability 
5.3 Probability Methods 

5.4 Conditional Probability 
5.5 Probability Distributions 
5.6 Binomial & Poisson Distribution 
5.7 Normal Distribution 

  

6.1 Rates of Change 
6.2 Differentiation 
6.3 Applications of Differentiation 

6.4 Amti-Differentiation (1) 

6.5 Amti-Differentiation (2) 
6.5 Integration (1) 

6.6 Integration (2) 

6.7 Methods of Integration 

 



    
CHAP R 

i g 

ALGEBRA 

| 
. 

T 
—
—
—
—
—
—
—
—
—
 

—
—
—
—
—
—
 

e
 
e
 

et
 

e
 

—
—
—
 

e
 

-
 
-
 

-
 

 



CHAPTER 1 

Arithmetic sequences 

A sequence is a set of quantities arranged in a definite 

order. 

1,2,3,4,5,6,... -1,2,-4,8,-16,.. 1,1,2,3,5,8,13,... 

are all examples of sequences. When the terms of a sequence 
are added, we obtain a series. Sequences and series are used to 

solve a variety of practical problems in, for example, business. 

There are two major types of sequences, arithmetic and 
geometric. This section will consider arithmetic sequences 
(also known as arithmetic progressions, or simply A.P.). The 

characteristic of such a sequence is that there is a common 

difference between successive terms. For example: 

1,3,5,7,9,11,... (the odd numbers) has a first term of 1 and 

a common difference of 2. 

18, 15, 12, 9, 6, . . . has a first term of 18 and a common 

difference of -3 (sequence is decreasing). 

The terms of a sequence are generally labelled: 

Uty Uy Uy lh, 

‘The ‘nth term’ of a sequence is labelled #, . In the case of an 
arithmetic sequence which starts with a and has a common 
difference of d, the nth term can be found using the formula: 

u,=a+(n-1)d where d =u,—u,=u,~t,=..n=1,2,3... 

  

In this case, a = 7 and d = 4 because the sequence starts with 
a7 and each term is 4 larger than the one before it, i.e. d = 11 
- 7 = 4. Therefore the nth term is given by 

u,=7+(n-1)4 

Thatis, #,=47+3 

1, =4X20+3=83 

(n = 20 corresponds to the 20th term) 

    

The data is: @ = 120 and when 7 = 10, u, = 57 (i.e. 10th term 

is 57). 

14, =120+(10-1)d 

120494 =57 

d=-7 

This gives, 

Using #,=a+(n—1)d , we then have: 

u,=120+(n—1)x(-7) 

=127-7n 

4, =127-7x15 
=22 

  

In this instance we know neither the first term nor the 
common difference and so we need to set up equations to be 

solved simultaneously. 

The data is: u,=a+6d=165 -1 

y=a+11d =24 -(2) 

We first solve for ‘d:(2) - (1): 54 =75&d =15 

Substituting into (1): 2+6X15=165a=75 

Tofind the24th term we use thegeneral term: #, =4 +(n—1)d 
with n = 24: 

u,=75+(24-1)x15=42 

 



  

The values can be seen as a sequence: $25 600, $25 510, $25 

420 etc. 

In this case a = 25 600 and d =25 510 - 25 600 = ~90 so that: 

,=15600-+(72—1)x(~90) 

=25690—-907 

15000= 25690907 

907=25690~15000 

n=11877 

The car will be worth less than $15 000 after 119 months. 

  

On ‘final approach’ a pilot aims to hold the airspeed constant 

and to descend in a straight line. As a result, if measured at 

regular intervals, range to the ‘piano keys' and altitude form 

arithmetic sequences. 

Using a graphics calculator 

Most graphic calculators have an automatic memory facility 

(often called Ans) that stores the result of the last calculation 

as well as an ability to remember the actual calculation. This 

can be very useful in listing a sequence. 

The sequence has a first term of 

5. Enter this and press ENTER | 

or EXE. 

The common difference of the 

sequence is 7 so enter + 7. 

  

The display will show Ans + 7 which means ‘add 7 to the 

previous answer’ 

From here, every time you press ENTER (or EXE), you will 

repeat the calculation, generating successive terms of the 

sequence. 

However most calculators are more sophisticated than this. It 

is possible to set up a spreadsheet type file. These can be used 

much as one might use Excel to make repetitive calculations. 

TI models          

     

dd Calculator 

  

   5:Add Data & Statistics 

  

  

  

  

          

  

42| =7+a1 
  

Casio models 

=T+A1 
DELETEIINSERTICLEAR I 

We now consider Example 8.2, where we obtained the 

sequence #,=127-77 and wished to determine the 

15th term. 

Most calculators have many features that can be used with 

sequences. Become familiar with all of them for your model.



Exercise 1.1.1 

1. 

a Show that the following sequences are arithmetic. 

b Find the common difference. 

c Define the rule that gives the nth term of the sequence. 

i {2,6,10,14,...} 

i {20,17,14,11,...} 

i {1,-4,-9,...} 

iv {0.5,1.0,1.5,2.0,...} 

v {y+Ly+3,y+5...} 

vi fx+2,6x-2,...} 

2. Find the 10th term of the sequence whose first four 
terms are 8, 4, 0, —4. 

3. Find the value of x and y in the arithmetic sequence {5, 
%18k 

4. An arithmetic sequence has 12 as its first term and a 
common difference of -5. Find its 12th term. 

5; An arithmetic sequence has -20 as its first term and a 

common difference of 3. Find its 10th term. 

6. The 14th term of an arithmetic sequence is 100. If the 

first term is 9, find the common difference. 

7. The 10th term of an arithmetic sequence is —40. If the 

first term is 5, find the common difference. 

8. Ifn+5,2n + 1 and 4n - 3 are three consecutive terms 

of an arithmetic sequence, find n. 

9; The first three terms of an arithmetic sequence are 1,6, 
11. 

a. Find the 9th term. 

b. Which term will equal 1512 

10.  Find x and y given that 4—~/§,x,)’ and 2-/3 are 

the first four terms of an arithmetic sequence. 

11.  For each of the following sequences, determine: 

i its common difference 

ii. its first term 

a. u,==5+2n,n21 

AN = > A 

b. u,=3+4(n+1),n21 

12.  The third and fifth terms of an A.P. are (x + y) and 

(x - y) respectively. Find the twelfth term. 

13.  The sum of the fifth term and twice the third of an 

arithmetic sequence equals the twelfth term. If the 

seventh term is 25 find an expression for the general 
term, z, 

14.  For a given arithmetic sequence, #, = and #, =7 . 

Find: 

a the common difference. 

b. u, 

Arithmetic series 

If the terms of a sequence are added, the result is known as a 

series. 

The sequence: 1,2,3,4,5,6,. .. 

givesthe series:  1+2+3+4+5+6+... 

and the sequence: -1,-2,-4,-8,-16... 

gives the series:  (-1) +(-2) + (=4) + (-8) + (-16) + ... 

(or-1-2-4-8-16-...) 

The sum of the terms of a series is referred to as S, the sum 

of n terms of a series. 

For an arithmetic series, we have: 

S, =uu,+uy+..u, 

=a+(a+d)+(a+2d)+(a+3d)+...+(a+(n-1)d) 

For example, if wehaveasequence definedby #, =6+47,721 

then the sum of the first 8 terms is given by: 

Sy=u vyt s+l 

=10+14+18+...+38 

=192 

Most calculators have several ways of handling sequences and 
series. We have already referred to the LIST (spreadsheet) 

feature. 

An alternative (TI) is to use MENU, 6 (STATISTICS), 4 

(LIST OPERATIONS),5 (SEQUENCE) - the exact calculator 

method will vary - consult the manual!:



EQUENCES 

  

Casio provide a summation function in run mode. This can 

be found under F4-MATH, F6-, F2-2. Fill the boxes and 

press EXE: 

8 

> (6+4xN) 
N=1 

   
@ 

  

    

     

seq(6+4' mnl, 8) 
  \ 

{10,1418,22,26,30,34,38 } ‘k 

Addition of the terms can be achieved using the Sum 

function. This can be found under the 'book’ ke; 

    0 

  

seq(6+4- nnl, 8)     
The sigma notation is discussed later in this section. 
  {10,1418,22,26,30,3438} | 

sum(seq(6+4~ nnl, 8)) 192 
There will be many cases in which we can add the terms of 

a series in this way. If, however, there are a large number of 

terms to add, a formula is more appropriate. 

There is a story that, when the mathematician Gauss was a child, his teacher was having problems with him because he always 

finished all his work long before the other students. In an attempt to keep Gauss occupied for a period, the teacher asked him to 

add all the whole numbers from 1 to 100. ‘5050’ Gauss replied immediately. 

It is probable that Gauss used a method similar to this: 

1 2 3 4 5 6 3 96 97 98 99 100 

100 99 98 97 96 95 - 5 4 3 2 1 

101 101 101 101 101 101 .. 101 101 101 101 101 

Adding each of the pairings gives 100 totals of 101 each. 

This gives a total of 10100. This is the sum of two sets of the 

numbers 1+ 2 +3 +... + 98 + 99 +100 and so dividing the full 
answer by 2 gives the answer 5050, as the young Gauss said. 

It is then possible to apply the same approach to such a 

sequence, bearing in mind that the sequence of numbers 

must be arithmetic. 

Applying this process to the general arithmetic series we have: 

a a+d a+2d 

a+(n-1)d a+(n-2)d a+(n-3)d 

Each of the pairings comes to the same total. 

Here are some examples: 1st pairing: a+a+(n 

2nd pairing: 

3rd pairing: 

There are n such pairings so: 2X5, =7 x[2a+(n=1)4] Thati 

a+(n-3)d a+(n-2)d a+(n-1)d 

a+2d a+d a 

~1l)d=2a+(n-1)d 

a+d+a+(n-2)d=2a+n-1)d 

a+2d+a+(m-3)d=2a+n-1)d 

s, 8, =2 x[2a+(n-1)d] 

Giving the formula, for the sum of n terms of a sequence- 

Note also that S, :12’(,,\ +u,) because S, (z/ 

  

A+ + (= l)t/)):/—zl(Zu, +(n—1)d) as above - and (a = u,).



Al % 

This formula can now be used to sum large arithmetic series: 

  

We have the following information: a = u, = -2 

andd=u,-u=1-(-2)=3. 

Then, the sum to 7 terms is given by: S, =§x[2a+(n71)d] 

So that the sum to 20 terms is given by 

20 
S :7><[2><(—2)+(20—1)><3] 

=10[-4+19x3] 

=530 

- . 3 
We have the following information: a = u, = 5 

  

andd = U, - u= —%—[—%]: 

Then, with 1 = 35 we have 

Sy :§[2x[—§]+(35—1)xfl 

d T 

:175’:7é+34><l] 
S 4 

5 
=135 

8 

   From the given information we have: u, = a + 2d =0 - (1) 

1 
;[2a+14z{]=—300 

i.e. 5a + 105d = -300 

and: ;= 

o
     

soa+7d=-20-(2) 

The pair of equations can now be solved simultaneously: 

(2)-(1):5d=-20¢ d=-4 

Substituting into (1) we have: @ + 2x-4=0< a=8 

This establishes that the series is 8 + 4 + 0 + (<4) + (-8) + ... 

So the first term is 8 and the sum of the first ten terms is: 

Sm=%[16+9><—4]:~100 

Using the TI_NSpire we have, with the general term 12 —4n: 

  

    
seq(12-4-m,1,1,10) ‘ 

{840,4-8,-12,-16,-20,-24,-28 } 

\sum(seq(lz—& nnl, 10)) -100 

Using a Casio model, this can be evaluated: 

  

  

The series is: 20 + 23 + 26 + ..... 

The question implies that the company is looking at the total 

number of computers sold, so we are looking at a series, not 
a sequence. 

The question asks how many terms (months) will be needed 

before the total sales reach more than 1000. From the given 

information we have: a = 20, d =23 - 20 = 3. 

Therefore, we have the sum to 7 terms given by: 

S,,=%[2><20+(n—1)><3] 

n 
=Z[3n+37 2{3+37]



  

Next, we determine when S = 1000: 

%[3/14—37]: 1000 

31 +371=2000 

31* +371—2000=0 

Solving for n can be done using several methods: 

Method 1: Quadratic formula 

—37++/37° —4X3x-2000 prm NS SR S 
2x3 

=2037..[-327] 

Method 2: Graphics Calculator Solve function 

T ol | 

  

nSolve(3~x2+37»x—2ooo=0’ ) 20.3794 

If using Casio, select the Equations module: 

MAIN MENU 

  

Select FZPolynomial, F1-degree2 (quadratic) 

] (dc)Resd 
aX2 +bX+c=0 

a b c 

L 3 37 R 

  

    

  

-2000 
[SOLVE) BEIE CLEARIEDIT] 

Then F1 will initiate solve: 

B [ (IR 
aX2 +bX+c=0 

ke 

  

      

20.37941486     
  

   

Method 3: Table of values 

   

  

   
    seq(} 112+37- n,n,15,25) 

{ 1230,1360,1496,1638,1786,1940,2100,22¢" 

Casio: Using the Table Module (7) 

Enter the rule (using x as the variable can save time): 

  

Y1E3x2+37x [—1 

Use F5-SET to set the values of the variable (15 to 25) and 

then EXE F6-Table: 
  

  

  

(dFc)Rea) 

W 
19 1786 
20 1940 
21 2100 

EEE 2260 - 

(FORMULA T3 MO CEDTT ) GPH-C GPEEPLD 

  

  

A nice feature of the Casio is that it will show you a graph. 

Press F6 and Shift F2-ZOOM, F5-AUTO (to find the points), 

  

  

    U ATOI S [B0X] 

  

  

Notice that we have entered the expression for S, as the 

sequence rule. In fact, the series itself is made up of terms 

in a sequence of so-called partial sums, often called a sum 

sequence. 

That is, we have that {5‘,51,5',,...}=(15,3354,”.‘{ forms a 

sequence. 

The answer then, is that the company will sell its thousandth 

computer during the 20th month.



HAPTE : 

Exercise 1.1.2 

1. Find the sum of the first ten terms in the arithmetic 

sequences 

a {1,4,7,10,...} 

b {3,9,1521,...} 

c {10,4,-2,....}. 

. Ny . S, 
2. For the given arithmetic sequences, find the sum, ", 

to the requested number of terms. 

a {4,3,2,...}for n=12 

b {4,10,16,...} forn=15 

C {2.9,3.6,43,...} forn=11 

3. Find the sum of the following sequences: 

a {5,4,3,...,-15} 

b {3,9,15,...,75} 

c {3,575 0529} 

4. The weekly sales of washing machines from a retail 
store that has just opened in a new housing complex 
increase by 2 machines per week. In the first week of 

January 1995, 24 machines were sold. 

a How many were sold in the last week of 
December 19952 

b How many machines did the retailer sell in 
19952 

c ‘When was the 500th machine sold? 

5. The fourth term of an arithmetic sequence is 5 while 
the sum of the first 6 terms is 10. Find the sum of the 
first nineteen terms. 

6. Find the sum of the first 10 terms for the sequences 
defined by: 

a u,==2+8n 

b u,=1-4n 

7. The sum of the first eight terms of the sequence 
{lnx,lnxly,lnx’y‘,.,,} is given by 4(alnx + blny) . 
Find a and b. 

Sigma notation 

There is a second notation to denote the sum of terms. This 

other notation makes use of the Greek letter X as the symbol 

to inform us that we are carrying out a summation. 

In short, ¥ stands for “The sum of . .. 

‘This means that the expression 

For example, if #, =2+5(7—1), i.e.an A.P. with first term a = 
2 and common difference d = 5, the expression: 

8, =i[z+5(i~1)] 

would represent the sum (/;flthe first n terms of the sequence. 

So, the sum of the first 3 terms would be given by: 

i[2+5(1’—1)] 

:[2+5(1—1)]+[2+5(2—1)]+[2+5(3—1)] 

Term 1 Term2 Term 3 

= 2 + 7 + 12 

=21 

Properties of £ 

1 i ditrbutve. Thati, - 

2. - for some constant value k. 

3 - i.e. adding a constant term, k, 

n times is the same as multiplying k by n. 

 



    

=ttt 

  

=[5+2]+[5+4]+[5+6]+[5+8]+[5+10] 

=7+9+11+13+15 

=55 

b Sleu-r]-3lul 3] 
= = 

~23[u)}-Slv] . o 

2) [4]=2x55=110 
= 

and (Using properties) 

iy,:i(z—y) 

-3 ()53 
=2x5-5[1+2+3+4+5] 

=65 
5 
Y [24,-v,]=110-(-65) 
= 

=175 
1000 

< Z[Su,+2V,]=§[5(5+2i)+2(2—51’)] 
- 

™ 
= [25+10/+4-10/] 

- 
1000 

=>29 
! 

=29x1000 
=29000 

In this example we have tried to show that there are a number 
of ways to obtain a sum. It is notalways necessary to enumerate 

every term and then add them. Often, an expression can first 

be simplified. 

N[ A 

Exercise 1.1.3 

10. 

11. 

Find the twentieth term in the sequence 9, 15, 21, 27, 
3Byans 

Fill the gaps in this arithmetic sequence: -3, _, , _, _, 

512 

An arithmetic sequence has a tenth term of 17 and a 
fourteenth term of 30. Find the common difference. 

1 
If 4=15 and u,m,:—I% for an arithmetic 

sequence, find the first term and the common 

difference. 

Find the sum of the first one hundred odd numbers. 

Anarithmetic series has twenty terms. The first term is 

-50 and the last term is 83, find the sum of the series. 

Thirty numbers are in arithmetic sequence. The sum 

of the numbers is 270 and the last number is 38. What 

is the first number? 

How many terms of the arithmetic sequence: 2, 2.3, 

2.6,2.9, ... must be taken before the sum of the terms 

exceeds 100? 

Sandip and Melissa save $50 in the first week of a 

savings program, $55 in the second week, $60 in the 
third and so on, in arithmetic progression. How much 
will they save in ten weeks? How long will they have to 
continue saving if their target is to save $5000? 

A printing firm offers to print business cards on the 

following terms: $45 for design and typesetting and 

then $0.02 per card. 

a ‘What is the cost of 500 cards from this printer? 

b How many cards can a customer with $100 
afford to order? 

A children’s game consists of the players standing in 
a line with a gap of 2 metres between each. The child 

at the left-hand end of the line has a ball which s/he 

throws to the next child in the line, a distance of 2 

metres. The ball is then thrown back to the first child 
who then throws the ball to the third child in the line, 

a distance of 4 metres. The ball is then returned to the 

first child, and so on until all the children have touched 

the ball at least once.
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a If a total of five children play and they make the least 
number of throws so that only the leftmost child 
touches the ball more than once: 

i What is the largest single throw? 

i What is the total distance travelled by the ball? 

b If seven children play, what is the total distance 
travelled by the ball? 

c If n children play, derive a formula for the total distance 
travelled by the ball. 

d Find the least number of children who need to play 

the game before the total distance travelled by the ball 

exceeds 100 metres. 

e The children can all throw the ball 50 metres at most. 

i What is the largest number of children that can 

play the game? 

ii What is the total distance travelled by the ball? 

12.  Find each sum. 

10 100 51 
aYk by (2k+1) ¢ (34+5) 

= = = 

13.  If-3+4iand 12 - 3i find: 

a i;[u[ +u/] b g[au,mu,] c i}:[[//y'] 

142 Show that for an arithmetic sequence, u = § - , 
where u_is the nth term and S is the sum of the first n 

terms. 

b Find the general term, u , of the A.P given that 

10 
S, =§(3n-1), 

10   

Geometric sequences 

  

Attempts to understand the sizes of animal populations have 
often used sequences and series. 

Sequences such as 2, 6, 18, 54, 162, ... and 200, 20, 2,0.2, ... in 

which each term is obtained by multiplying the previous one 

by a fixed quantity are known as geometric sequences. 

The sequence: 2, 6, 18, 54, 162, ... is formed by starting with 2 

and then multiplying by 3 to get the second term, by 3 again 

to get the third term, and so on. 

For the sequence 200, 20, 2, 0.2, ..., begin with 20 and multiply 
by 0.1 to get the second term, by 0.1 again to get the third 
term and so on. 

  

The constant multiplier of such a sequence is known as the 

common ratio. 

The common ratio of 2, 6, 18, 54, 162,... is 3 and of 200, 20, 2, 

0.2,..itis 0.1. 

The nth term of a geometric sequence is obtained from the 

first term by multiplying by #n-1 common ratios. 

This leads to the formula for the nth term of a geometric 
sequence: 

where - and n is the term number, a the first 

term and r is the common ratio. 

 



The first term is a = 2. The common ratio r =3 =/, ='*/¢ and 
n, the required term, is 10. 

Use the formula to solve the problem: 

In this case, a = 200, r=£=i=o.l and n=15. 
200 10 

Using the general term u,=axr’ 
by: 

14,=200%0107" 

=200%0.1" 

=2x10™" 

, the 15th term is given 

The sequence 1,——,—,— ..., has a common ratio of L3 
8’16 o

=
 

-
 

r=—= 5" 

Using the general term , we have: 

el 
) 
=0.000977 

Many questions will be more demanding in terms of the way 

in which you use this formula. You should also recognise that 
the formula can be applied to a range of practical problems. 

Many of these involve growth and decay and can be seen as 

similar to problems studied in 1.2. 

From the given information we can set up the following 

equations: 

  

u=axr'=3 ={1) 

and  #,=axr’=075 B ) 

As with similar problems involving arithmetic sequences, the 

result is a pair of simultaneous equations. In this case these 

can best be solved by dividing (2) by (1) to get: 

  

  

axr 4 

Substituting results into (1) we have: a(t%) =3oa=48 

Therefore, the 10th term is given by: #, =48x(£05)" = i3—32 

There are two solutions: 48,24, 12,6, . .. (for the case r =0.5) 

&48,-24,12,-6,...(r=-0.5). 

  

The sequence 0.25, 0.75, 2.25, ..., 44286.75 has a first term 

. 0.75 ; 8 
a=0.25 and a common ratio r=—0§= 3. In this problem it 

is n that is unknown. Substitution of the data into the formula 

gives: #,=025x3"" =44286.75 

The equation that results can be solved using a calculator or 

logarithms (see Sec. 1.2) 

  

If using a Casio calculator, select module A-Equation. Then 

choose F3-Solver. Enter the equation and press EXE, F6- 

SOLVE. 

1



HAPTER 

B Ghfdfon]) (ofd 
=44286.75 } 

  

For those of you who have encountered logarithms, the 
analytic solution is: 

S0 = ( 44286.75 ) 

025 
=177147 

log,, (3" =log,,(177147) 

(n—-1)log,,(3)=log,,(177147) 

_log,,(177147) 
n-1 

log,,(3) 
n—=1=11 

n=12 

[Faame— o= & i e o i w 

    If the car loses 15% of its value each year, its value will 

fall to 85% (100% — 15%) of its value in the previous 

year. This means that the common ratio is 0.85 (the 
fractional equivalent of 85%). Using the formula, the 
sequence s: #, =34000x0.85"™, i.e. $34000, $28900, 
$24565, $20880.25, . . . 

b The value after six years have passed is the seventh 
term of the sequence. This is because the first term of 
the sequence is the value after no years have passed. 

4, =34000x0.85° = 12823 or $12 823. 

c 

10000 = 34000 0.85" 

0.85”=0.2941 

log,,(0.85") = log,,(0.2941) 

nlog,,(0.85)=log,,(0.2941) 

e log,,(0.2941) 
log,,(0.85) 

n=753 
This means that the car’s value will fall to $10000 after 
about 7 years 6 months. 

12   

A quantity can be increased by 2% by multiplying by 1.02. 
Note that this is different from finding 2% of a quantity which 

is done by multiplying by 0.02. The sequence is 12500, 12500 
%1.02, 12500%1.02? etc. with a = 12500, 7 = 1.02. 

It is also necessary to be careful about which term is required. 
In this case, the population at the start of 1970 is the first 
term, the population at the start of 1971 the second term, and 
s0 on. The population at the start of 1980 is the eleventh term 
and at the start of 2010 we need the forty-first term: 

#,,=12500x1.02" 

=27600 

In all such cases, you should round your answer to the level 
given in the question or, if no such direction is given, round 
the answer to a reasonable level of accuracy. 

R N N Ve R W | 

Using a graphics calculator 

As with arithmetic sequences, geometric sequences such as 

50,25, 12.5, ... can be listed using a graphics calculator. For 

this sequence we have a = 50 and r = 0.5, so, 

  

seals0 (0.5 1.6) H 
9 {50.25.,12.5,6.253.125} 

Exercise 1.1.4 

1. Find the common ratio, the 5th term and the general 
term of the following sequences. 

a3,6,12,24, .. b3,1, l,l 
3’9 

z,z,i,i,“. d-1,4,-16, 64, ... 
5'25'125 

a a 
b,4,~,~ . fa ab, b, ... e av,a b bz 

2. Find the value(s) of x if each of the following are in 

geometric sequence. 

a3,x48 1 b i,x,— 
2 2



11. 

The third and seventh terms of a geometric sequence 
are 0.75 and 12 respectively. 

a Find the 10th term. 

b What term is equal to 30727 

A rubber ball is dropped from a height of 10 metres 
and bounces to reach /s of its previous height after 

each rebound. Let u be the ball's maximum height 
before its nth rebound. 

a Find an expression for u . 

b How high will the ball bounce after its 5th 

rebound. 

c How many times has the ball bounced by the 
time it reaches a maximum height of °**/ 1206 m. 

The terms k+4, 5k+4, k+20 are in a geometric sequence. 

Find the value(s) of k. 

A computer depreciates each year to 80% of its value 

from the previous year. When bought the computer 
was worth $8000. 

a Find its value after: i 3 years ii 6 years. 

b How long does it take for the computer to 
depreciate to a quarter of its purchase price? 

The sum of the first and third terms of a geometric 

sequence is 40 while the sum of its second and fourth 

terms is 96. Find the sixth term of the sequence. 

The sum of three successive terms of a geometric 
sequence is **/2, while their product is 125. Find the 
three terms. 

‘The population in a town of 40000 increases at 3% per 
annum. Estimate the town’s population after 10 years. 

Following new government funding it is expected that 

the unemployed workforce will decrease by 1.2% per 

month. Initially there are 120000 people unemployed. 

How large an unemployed workforce can the 

government expect to report in 8 months time. 

The cost of erecting the ground floor of a building is 
$44000, for erecting the first floor it costs $46200, to 
erect the second floor costs $48510 and so on. Using 

this cost structure, how much will it cost to erect the 

5th floor? What will be the total cost of erecting a 

building with six floors? 

) o[8[l 

  

Geometric series 

  

Wall Street in New York - where interest becomes a geometric 

series 

When the terms of a geometric sequence are added, the result 

is a geometric series. 

For example: 

The sequence 3, 6, 12, 24, 48, . . . gives rise to the series: 3 + 6 

+12+24+48+... 

and, the sequence 24, ~16, 10°/3, ~7'/s... leads to the series 24 

~16 +10%/3 =7 /ot 

Geometric series can be summed using the formula that is 

derived by first multiplying the series by r: 
P 

S, =a+ar+ar+ar'.+ar" +ar’ + ar™! 

£S,=  ar+ar’+ar.var var'” +ar' var” 

Subtracting the second equation from the first: 

S,—rS,=a—ar" 

S$,(1-r)=a(1-r") 

=41(]—r") 

- a(r'-1) 
This formula can also be written as: S, = g#EL 

Itis usual to use the version of the formula that gives a positive 

value for the denominator. And so, we have: 

The sum of the first n terms of a geometric series, S, where 

r+# 1is given by: 

13



  

  

a Inthiscasea=2,r=2andn=9. 

al(r 
Because r = 2 it is convenient to use: .S‘,,:—(—T) 

r— 
2(2’-1 5221 

2=, 

=1022 

Using this version of the formula gives positive values for the 
numerator and denominator. The other version is correct but 

gives negative numerator and denominator and hence the 
same answer. 

b a=5r=-3andn=7. 

  

  

_ali-r) o gofr) 
" 1=F ol 

s(1=(=3)) 53y -1) 

T 1=(=3) T (=3)-1 

=2735 =2735 

c a=24,r=075and n=12. 

1—p" 5 _el1=r) 
=z 

32 This version gives the positive values. 
24( ) ] 

S=——r 
3 4 

=92.95907 

d a=20,r=-15and n=10. 

1—p" 5 oli=r) 
I—r 

20 5 
S0 = ) 1-(-15) 

=-453.32031 

‘When using a calculator to evaluate such expressions, it is 

advisable to use brackets to ensure that correct answers are 

14   

oAU E = 2 

obtained. For both the graphics and scientific calculator, the 
negative common ratio must be entered using the +/- or (-) 

20- (1—(-1A5)1°) -453.3203125 H 

1 5; 
e — e = = e L ) 

Other questions that may be asked in examinations could 
involve using both formulae. A second possibility is that you 
may be asked to apply sequence and series theory to some 
simple problems. 

  

From the given information we have: 

u,=-30.. ar=-30 -(1) 

a(r’-1 
s,=—1s.-.(—)=—15 -(2) 

=1 

The result is a pair of simultaneous equations in the two 
unknowns. The best method of solution is substitution: 

=30 
F 1):a=—o. Tom (1): @ g 

» 

Substituting into (2): —-——— r— 

  

—30(r*-1) 
g5 

r(r-1) 

=30(r+1)(7—1) s 

r(r-1) 

=30(r+1)=15r 

=307-30=-15r 

r=-2 

=020 
r 2 

The series is 15 - 30 + 60 - 120 + 240 - ... which meets the 

conditions set out in the question.



  

The problem is best looked at from the last payment of $2500 

which has just been made and which has not earned any 

interest. 

The previous payment has earned one lot of 9% interest and 

50 is now worth 2500x1.09. 

The previous payment has earned two years worth of 

compound interest and is worth 2500x1.09%. 

This process can be continued for all the other payments and 
the various amounts of interest that each has earned. They 

form a geometric series: 

Last payment First payment 

2500 + 2500%1.09 + 2500x1.09% + + ...+ 2500%1.09%. 

The total amount saved can be calculated using the series 

formula: 

a(r’ —1) 

r=l 

2500(1.09"°~1) 
ST 09 
=37982.32 

The family will save about $37 982. 

& = 

Exercise 1.1.5 

1. Find the common ratios of these geometric 
sequences: 

a7,21,63,189, ... b 12,4, %5 Ys, o 

cl,-1,1,-1L1,.. d9,-3,1,-", s, .. 

e 64, 80, 100, 125, ... £27,-18,12,-8, ... 

2 Find the term indicated for each of these geometric 
sequences. 

a 11,33,99,297,.. 10th term. 

10. 

  

b 1,0.2,0.04, 0.008, .... 5th term. 

c 9,6, 4,-"/3, ... 9th term. 

d 21,9, %17, %19y e 6th term. 

e sy =M1y =16 Mot e 6th term. 

Find the number of terms in each of these geometric 

sequences and the sum of the numbers in each 

sequence: 

  

a4, 12, 3 5236196 b 11, -22,44,...,704 

6561 
- -10 = ¢ 100, -10, 1, ..., -10 d 48, 36,27, ~ 7024 

1 9 81 6561 
=y £100,10, 1, ..., 1071 
8" 327128 2048 

Write the following in expanded form and evaluate. 

7. T £ 6 4 2 S 

9 Z(—) b2 c z(—) 
w2 = 3 

§ " 
Ay ey 

< = 
The third term of a geometric sequence is 36 and the 

tenth term is 78 732. Find the first term in the sequence 

and the sum of these terms. 

A bank account offers 9% interest compounded 
annually. If $750 is invested in this account, find the 

amount in the account at the end of the twelfth year. 

‘When a ball is dropped onto a flat floor, it bounces to 

65% of the height from which it was dropped. If the 
ball is dropped from 80 cm, find the height of the fifth 

bounce. 

A computer loses 30% of its value each year. 

a ‘Write a formula for the value of the computer 
after n years. 

b How many years will it be before the value of 

the computer falls below 10% of its original 

value? 

A geometric sequence has a first term of 7 and a 

common ratio of 1.1. How many terms must be taken 

before the value of the term exceeds 10007 

A colony of algae increases in size by 15% per week. 

If 10 grams of the algae are placed in a lake, find the 
weight of algae that will be present in the lake after 12 

weeks. The lake will be considered ‘seriously polluted 

15



  

when there is in excess of 10 000 grams of algae in 

the lake. How long will it be before the lake becomes 
seriously polluted? 

11. A geometric series has nine terms, a common ratio of 
2 and a sum of 3577. Find the first term. 

12. A geometric series has a third term of 12, a common 

ratio of -'/, and a sum of 32'/,s. Find the number of 
terms in the series. 

13. A geometric series has a first term of 1000, seven terms 
and a sum of 6717/s. Find the common ratio. 

14. A geometric series has a third term of 300, and a sixth 
term of 37500. Find the common ratio and the sum of 

the first fourteen terms (in scientific form correct to 
two significant figures). 

15. A $10000 loan is offered on the following terms: 12% 
annual interest on the outstanding debt calculated 
monthly. The required monthly repayment is $270. 
How much will still be owing after nine months. 

16.  Asaprize for inventing the game of chess, its originator 

is said to have asked for one grain of wheat to be placed 
on the first square of the board, 2 on the second, 4 on 
the third, 8 on the fourth and so on until each of the 
64 squares had been covered. How much wheat would 
have been the prize? 

Combined arithmetic and 

geometric sequences and series 
‘There will be occasions on which questions will be asked that 
relate to both arithmetic and geometric sequences and series. 

  

When solving these sorts of questions, write the data as 
equations, noting that a is the same for both sequences. Let 

1, denote the general term of the arithmetic sequence and v, 
the general term of the geometric sequence. 

16 

‘We then have: 

u,=a+9d v,=ar =48 

ie.a+9d=ar=48-(1) 

U, =4v,=a +9d=4ar - (2) 

(1) represents the information ‘The third term of the 
geometric sequence is the same as the tenth term of the 

arithmetic sequence with both being 48’ 

(2) represents “The tenth term of the arithmetic sequence is 
four times the second term of the geometric sequence’ 

There are three equations here and more than one way of 
solving them. One of the simplest is: 

From (1) a + 94 = 48 and so substituting into (2): 

48 =dar & ar=12-(3) 

Also from (1) we have: ar® = 48 < (ar)r=48 - (4) 

Substituting (3) into (4): 12r=48 & r=4 

Substituting resultinto (1):a x 16 =48 a =3 

Substituting resultinto (1): 3 + 94 =48 <> d =5 

The common ratio is 4 and the common difference is 5. 

Itis worth checking that the sequences are as specified: 

Geometric sequence: 3, 12, 48 

Arithmetic sequence: 3, 8, 13, 18, 23, 28, 33, 38, 43, 48 

Exercise 1.1.6 

1 Consider the following sequences: 

Arithmetic: 100, 110, 120, 130, ... 

Geometric: 1,2,4,8,16, ... 

Prove that: 

a The terms of the geometric sequence will exceed the 
terms of the arithmetic sequence after the 8th term.



The sum of the terms of the geometric sequence will 

exceed the sum of the terms of the arithmetic after the 

10th term. 

An arithmetic series has a first term of 2 and a fifth 
term of 30. A geometric series has a common ratio of 

~0.5. The sum of the first two terms of the geometric 
series is the same as the second term of the arithmetic 

series. What is the first term of the geometric series? 

An arithmetic series has a first term of -4 and a 
common difference of 1. A geometric series has a first 
term of 8 and a common ratio of 0.5. After how many 
terms does the sum of the arithmetic series exceed the 
sum of the geometric series? 

The first and second terms of an arithmetic and a 
geometric series are the same and are equal to 12. The 
sum of the first two terms of the arithmetic series is 

four times the first term of the geometric series. Find 

the first term of each series, if the A.P. has d = 4. 

Bo-Youn and Ken are to begin a savings program. Bo- 
Youn saves $1 in the first week $2 in the second week, 
$4 in the third and so on, in geometric progression. 
Ken saves $10 in the first week, $15 in the second week, 
$20 in the third and so on, in arithmetic progression. 
After how many weeks will Bo-Youn have saved more 

than Ken? 

Ari and Chai begin a training program. In the first 
week Chai will run 10km, in the second he will run 
11km and in the third 12km, and so on, in arithmetic 
progression. Ari will run 5km in the first week and will 
increase his distance by 20% in each succeeding week. 

‘When does Ari’s weekly distance first exceed Chai’s? 

‘When does Ari’s total distance first exceed Chai’s? 

The Fibonacci sequence: 1, 1, 2,3, 5,8,13,21,... in 

which each term is the sum of the previous two terms 

is neither arithmetic nor geometric. However, after the 
eighth term (21) the sequence becomes approximately 
geometric. If we assume that the sequence is geometric: 

What is the common ratio of the sequence (to four 

significant figures)? 

Assuming that the Fibonacci sequence can be 
approximated by the geometric sequence after the 

eighth term, what is the approximate sum of the first 
24 terms of the Fibonacci sequence? 

  

Convergent series 

If a geometric series has a common ratio between -1 and 1, 

the terms get smaller and smaller as 7 increases. 

The sum of these terms is still given by the formula 
4| » 

5,220 
1—r 

a 
For-1<r<1,r"— Qasn— oo, S”_)I_; 

1f|r| < 1, the infinite sequence has a sum given by: - 

This means that if the common ratio of a geometric series is 

between -1 and 1, the sum of the series will approach a value 
of —%_ as the number of terms of the series becomes large, 

1-r 

i.e. the series is convergent. 

  

a 16+8+4+2+1+.. 

In this case: a u=16,r=%=>s_ = 

  

b 9-6+4-"5+"/ 

a=9,r:—£=&',, N . L 
There are many applications for convergent geometric series. 

The following examples illustrate two of these. 

  

0462 can be expressed as the series: 
0.462 + 0.000462 + 0.000000462 + ...



Rl : 

2. Use geometric series to express the recurring decimal 

or fl—f-i-f—“z—t" 23.252321“ as a mixed nxfmber, ¢ 
1000 1000000 1000000000 

3. Biologists estimate that there are 1000 trout in a lake. 
462 1 If none are caught, the population will increase at 10% 

This is a geometric series with: 2= m,rz 1000° per year. If more than 10% are caught, the population 

will fall. As an approximation, assume that if 25% of 

the fish are caught per year, the population will fall by 
P 462, 462 462 15% per year. Estimate the total catch before the lake is 

It follows that: §_=——= 1000 _ 1000 _ 252 ‘fished out. If the catch rate is reduced to 15%, what is 
1-r __1 99 999 o s - 

1000 1000 the total catch in this case? Comment on these results. 

4. Find the sum to infinity of the sequence 45, -30, 20, ... 

  

(Bt o R AT e o T e s e 
5. 'The second term of a geometric sequence is 12 while 

the sum to infinity is 64. Find the first three terms of 
this sequence. 

6. Express the following as rational numbers: 

a 036 b 037 ¢ 212 

7: A swinging pendulum covers 32 centimetres in its 

first swing, 24 cm on its second swing, 18 cm on its 

The ball bounces in a third swing and so on. What is the total distance this 
vertical line and does not pendulum swings before coming to rest? 
move sideways. On each 

bounce after the drop, the 8. The sum to infinity of a geometric sequence is *’/, 
ball moves both up and while the sum of the first three terms is 13. Find the 

down and so travels twice sum of the first 5 terms. 
the distance of the height 
of the bounce. 9 Find the sum to infinity of the sequence: 

1443, —— 
Distance = 10+15+15><4+15>< : .. \/' 1 

All terms, except the first, are geometric. 
15 10 aFind: i 2 (=¢) J<1,ii (=) JA<1. 

Distance 10-*-.5‘__=IO+—3 =70m =0 0 

1-= b i Hence, show that, 

  

4 

ln(H)c):x—lxZ slolag, 
2 3 4 

== e ] 

i Using the above result, show that: 
Exercise 1.1.7 

In2=1-—+—-——+ 
1. Evaluate: " 273 4 - y 

. 1. aFind: i Z(—tl) Jd<1,ii ¥ (-2) J<1 . 
a 27+9+3+§+,.. - o 

b T, L e losle Lot i 10100 1000 3 R o 
c 500 + 450 + 405 + 364.5 + ... i 

Using the above result, show that Z = 

  

d 3-0.3+0.03-0.003 +0.0003 -...



  

Exercise 1.1.8 

11. 

13. 

14, 

2k +2, 5k + 1 and 10k + 2 are three successive terms of 

a geometric sequence. Find the value(s) of k. 

1+2+3+..+10 
1.1 1 

Evaluate p 
I+ +—Fot— 

Find a number which, when added to each of 2, 6 and 

13, gives three numbers in geometric sequence. 

Find the fractional equivalent of: 

a238 b 462 c0.41717... 

Find the sum of all integers between 200 and 400 that 

are divisible by 6. 

Find the sum of the first 50 terms of an arithmetic 

progression given that the 15th term is 34 and the sum 

of the first 8 terms is 20. 

Find the value of p so that p + 5, 4p + 3 and 8p - 2 will 

form successive terms of an arithmetic progression. 

For the series defined by S, = 3n* — 11n, find ¢ and 

hence show that the sequence is arithmetic. 

How many terms of the series 6 + 3 + */, + ... must be 
taken to give a sum of 11'%/36? 

If 1 +2x + 42% +... =/, find the value of x. 

Logs of wood are stacked in a pile so that there are 15 

logs on the top row, 16 on the next row, 17 on the next 
and so on. If there are 246 logs in total, 

a how many rows are there? 

b how many logs are there in the bottom row? 

The lengths of the sides of a right-angled triangle form 

the terms of an arithmetic sequence. If the hypotenuse 

is 15 cm in length, what is the length of the other two 

sides? 

The sum of the first 8 terms of a geometric 
series is 17 times the sum of its first four terms. 

Find the common ratio. 

Three numbers a, b and ¢ whose sum is 15 are 

successive terms of a G.P, and b, a, ¢ are successive 

terms of an A.P. Find a, band c. 

15.  'The sum of the first # terms of an arithmetic series is 

given by: 

_S‘u=”(3”+l) ] 

2 

a Calculate S, &S, 

b Find the first three terms of this series. 

c Find an expression for the nth term. 

16.  An ant walks along a straight path. After travelling 

1 metre it stops, turns through an angle of 90° in an 

anticlockwise direction and sets off in a straight line 

covering a distance of halfa metre. Again, the ant turns 
through an angle of 90° in an anticlockwise direction 
and sets off in a straight line covering a quarter of a 

metre. The ant continues in this manner indefinitely. 

a How many turns will the ant have made after 

covering a distance of **/s, metres? 

b How far will the ant eventually travel? 

APPLICATIONS 

Sequences and series are used in a range of areas. 

  

  

Founded as a refuge from lawlessness, Venice was a great trade 

and financial centre in the 13th Century. 

In the Middle Ages, the charging of interest was forbidden to 
Christians and some other religions. 

Banking was the speciality of Jews. Many modern banking 

dynasties, such as the Rothschilds, are Jewish. 

Some cultures do not allow the charging of interest. How 

does money lending work in the Arab world? 

19



    

Financial District, Dubai, UAE. 

This diver is taking extra nitrogen into his blood because of 

the elevated pressure of the air he is breathing - one extra 
atmosphere for every 10 metres of depth. This nitrogen is 
released when he surfaces. If he surfaces too rapidly, this may 
cause bubbles to form in his blood. This results in the painful 

and sometimes fatal condition known as 'the bends'. 

  

To prevent this, he carries a 'dive computer' that records his 
depth as a time sequence and uses a mathematical model (a 

time series, as nitrogen is progressively added) to predict the 

nitrogen uptake and advise as to the safe ascent procedure. 

Compound interest 

We have already come across some practical examples of the 

use of G.P.s in the area of finance. In this section we further 

develop these ideas and look at the area of compound interest 
and superannuation. 

  
20 

= $600 + 8% x $600 
= $600(1.08) 

Endofyear1  value 

=$600(1.08) + 8% x $600(1.08) 

=$600(1.08) + 0.08 x $600(1.08) 

=$600(1.08)[1 + 0.08] 

=$600(1.08) 

End of year2  value 

Endofyear3 value = $600(1.08) + 8% x $600(1.08) 

=$600(1.08)* + 0.08 x $600(1.08)* 

=$600(1.08)*[1 + 0.08] 

= $600(1.08)* 

End of year 20 value =$600(1.08)* 

Thus, after 20 years the $600 amounts to $2796.57. 

TR T e T b R R 

Looking closely at the terms of the sequence, they form a G.P: 

600(1.08), 600(1.08)? 600(1.08)%, ..., 600(1.08)* 

where a = 600 and r = 1.08. 

Developing a formula for compound interest 

In general, if $P is invested at r% p.a. compound interest, it 

grows according to the sequence: 

i 5 
P[HLJ,P(HL] ,P(HL) Pl 

100 100 100 

  

where a = P(HL] and r= (1+LJ so that 
100 100 

where A, is the amount after 7 time periods. 

Superannuation 

Superannuation is a common way in which working people 

attempt to provide for themselves in retirement. In many 

cases, workers save a fixed amount from each pay-packet into 

an interest bearing account. 

   



  

t, = the Ist $1000 will be invested for 20 years at 12% p.a. 

t, = the 2nd $1000 will be invested for 19 years at 12% p.a. 

t, = the 3rd $1000 will be invested for 18 years at 12% p.a. 

t,, = the 20th $1000 will be invested for I year at 12% p.a. 

Finding the amount compounded annually using : 

PRV 
A, =P(1+4] , we have: 

£=1000| 14+—— ) =1000(1.12)" (2 
41000(” )_1000(1.12)“ 

( £,=1000( 1+—— j =1000(1.12)" 

12 Y ' £,,=1000] 1+—— | =1000(1.12 
“ ( mo) (112) 

To find the total of her investment after 20 years, we need to 

add the separate amounts: 

1000(1.12)% + 1000(1.12)"* + 1000(1.12)"* + ...1000(1.12)" 

= $80 698.74 

‘Thus her total investment amounts to $80 698.74 

  

Amount borrowed = $2000, r = 1% per month = 0.01 and 
n=4x12 =48 months. 

Let the monthly instalment be = $ M and the amount owing 
after n months = $A . 

Our aim is to find $M i.e. the amount of each instalment. 

After 1 month (after paying the 1st instalment), we have: 

A, =2000 + interest - M = 2000 + 2000 x 0.01 - M 

After 2 months, 

A=A X101-M 

=[2000(1.01)- 47]x1.01- M 

=2000x101° —101x M - M 

=2000x101°— M (1.01+1) 

After 3 months, 
A=A X101-M 
=[2000(1.01)" - 47(101+1) x101-21 

=2000x101° = M (101+1)x1.01- M 

=2000x101° = M[101° +101+1] 

After 4 months, 

A=A X101-M 
=[2000(1.01) ~ 41 (101 +1.01+1) [x101- 47 

=2000%1.01" = (101 +1.01° +1.01)x 101~ M 

=2000x101 = M [ 101" +101° +101+1 ] 
After n months, we then have 

A, =2000(1.01)" — M[1+1.01+1.01°+1.01* ... 1.01""'] 

thus, A, = 2000(1.01)* ~ M[1+1.01+1.01>+1.01° ... 1.017] 

Now, the loan is repaid after 48 months, meaning that A =0, 
therefore, solving for M, we have 

2000(1.01)* = M[1+1.01+1.01%+1.01* ... 1.017 =0 

2000(1.01)% = M[1+1.01+1.01%+1.01% ... 1.01¥ 

. 2000x1.01* 
1+101+101° +1.01° +...+101" 

The denominator is a G.P. with a = 1, 7= 1.01 and n = 48, so 

that 

1410141017 +1.01° ...+ 1017 =5, 

C1(1-101%) 
T 1-101 
=61.22261 

0(1.01)" 
Therefore, M :M=52.67 

61.22261 

That is, each instalment must be $52.67. 

The total paid = 52.67 x 48 = 2528.16 so that the interest paid 
=2528.16 - 2000 = 528.16 

That is, she ends up paying $528.16 in interest. 
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Although it is important to understand the process used in 

the examples shown, it is also important to be able to make 
use of technology. Calculators can help ease the pain of long 
calculations. 

If you purchase a flat for $200 000, pay 30% deposit, and 

mortgage the balance at 7.5% interest. You amortize your 

debt with monthly repayments for 30 years. 

What is the repayment? 

Using the amortisation table: 

  

(0 Y ST ey 

B Amortization ‘ 
B cash Flows 

@ Interest Conversion 

and the data given: 

  

amortTbl(30,360,7.5,140000,,,12,12 

0o o 0. 140000. 
1 -875. -103.9 13989 
2 -874.35 -104.55 139792.| I 

N3 -873.7 -105.2 139686.| || 
4 -873.04 -105.86 139580. 
5 -872.38 -106.52 139474. 
6 -871.71 -107.19 139367. 
7 -871.04 -107.86 139259. 
8 -870.37 -108.53 139150. 

R
 

In the first month, the payment will be $875 interest + $103.90 

principal making a total of (to the nearest $), $979. 

If using Casio, select the Financial Module (C), F4 

-Amortization. 

Exercise 1.1.9 

L To how much will $1000 grow to if it is invested at 12% 

p-a. for 9 years, compounding annually? 
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2. 

10. 

11. 

(Rl : g . 

A bank advertises an annual interest rate of 13.5% 

p-a. but adds interest to the account monthly, giving a 
monthly interest rate of 1.125%. Scott deposits $3500 
with the bank. How much will be in the account in 

20 months time? 

To what amount will $900 grow to if it is invested at 

10% p.a. for 7 years, compounding every 6 months? 

A man borrows $5000 at 18% p.a. over a period of 5 

years, with the interest compounding every month. 

Find to the nearest dollar the amount owing after 5 

years. 

Find the total amount required to pay off a loan of 
$20,000 plus interest at the end of 5 years if the interest 
is compounded half yearly and the rate is 12%. 

A man invests $500 at the beginning of each year in 

a superannuation fund. If the interest is paid at the 

rate of 12% p.a. on the investment (compounding 
annually), how much will his investment be worth 

after 20 years? 

A woman invests $2000 at the beginning of each year 

into a superannuation fund for a period of 15 years at 

a rate of 9% p.a. (compounding annually). Find how 

much her investment is worth at the end of the 15 

years. 

A man deposits $3000 annually to accumulate at 

9% p.a. compound interest. How much will he have 

to his credit at the end of 25 years? Compare this to 
depositing $750 every three months for the same 
length of time and at the same rate. Which of these 
two options gives the better return? 

A woman invests $200 at the beginning of each 
month into a superannuation scheme for a period of 
15 years. Interest is paid at the rate of 7% p.a. and is 
compounded monthly. How much will her investment 

be worth at the end of the 15-year period? 

Peter borrows $5000 at 1.5% per month reducible 

interest. If he repays the loan in equal monthly 
instalments over 8 years, how much is each instalment, 

and what is the total interest charged on the loan? 

Compare this to taking the same loan, but at a rate of 

15% p.a. flat rate. 

Kevin borrows $7500 to be paid back at 12.5% p.a. 

monthly reducible over a period of 7 years. What is the 
amount of each monthly instalment and what is the 
total interest charged on the loan. Find the equivalent 

flat rate of interest.



  

12.  Find the possible values of x if x+ 1, 3x + 2, and 2x* are But were you aware similar patterns are present in rocks? 

three consecutive terms of an arithmetic sequence. 
These hexagonal basalt columns on a beach in Iceland are 

k 
13.  Find k, given that Y (4i—29)=45. natural. They result from crystallisation from molten rock. 

= 

8 [ 

14.  Show that Y (2k-2)= 2 Bk +2)- 
k=3 k=1 

15.  Given four consecutive terms in a progression, 4, m, 

n, 49. Find the possible values of m and n, if the first 

three terms form an arithmetic sequence and the last 
three terms form a geometric sequence. 

  

Answers to Exercises 
2 

If we assume that the crystallisation of the rocks starts in 

one place (is this reasonable?), the pattern of hexagons will 

develop as follows: 

    
Theory of Knowledge 

Why did humans develop mathematics? 

There is no right answer to this question. 

There is little doubt that the need to service trade (count 

goods etc.) was one powerful motivation. 

However, it is probable that the patterns evident in nature 

played their part in stimulating the thought processes. 

You have probably noticed the patterns evident in plants: 

What sequence is implied here?   23



  

   

  

  

PR 
The study of these patterns would have gone nowhere without 

the ability to record numbers. 

Many counting systems were invented, but the system that 
has survived into the modern world is Hindu numeration. 

‘The original system uses symbols that are similar, but not 
identical to modern symbols. 

These pictures show the Jaipur observatory in Rajahstan 
India. 

Note the numeric notation. 
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Exponents 

Basic rules of indices 

e start by looking at the notation involved when 
dealing with indices (or exponents). 

The expression: 

axaxaxaxax..xa 

= n times — 

can be written in index form, a’, where 7 is the index (or 

power or exponent) and a is the base. 

This expression is read as “a fo the power of n”. or more briefly 
as “a to the n”. For example, we have that 3°=3 x 3 x 3x 3 x 3 
so that 3 is the base and 5 the exponent (or index). 

The laws for positive integral indices are summarized below. 

If a and b are real numbers and m and n are positive integers, 

we have: 

  

  

      

T 3136 =30 
1 Multiplication " =a 

[same base] 30 

m ” a'fl 9 5 9-5 
Division [same|a” +a&" =— 7+7=7 

2 a 
base] g =7 

Power of a 3)° _ o3 
7 2’) =2 

3 |power [same (n"’) =a"" ( ) 

base] =2       
  

3'x7'=(3%7)" 4 Power of a X B =(ab)" 

  

product o1 

” 3 
5 |Power of a am+b,,,=(g sapa(B 

quotient b % 
  

Negative one to| (_jyr_ ~Lzodd |(-1)'=-1 
a power Laeven |(-1)'=1             

There are more laws of indices that are based on rational 
indices, negative indices and the zero index. 

  

  

  

  

  

  

1 i L 
Fractional | 2” =¢a,neN 8=V 

1 E?de:l Note: if n is even, ! B 
[:5, root] then a>0.Ifnis | (-27)3=Y-27 

odd, then @€R =3 

Fractional 2 
» = 16* ={16" 2 |index au=n(am'”EN 

Type 2 =8 

Negative 
3 i 

index 

a’'=1,a#0 
iy (2o 120=1 

index 
Note 0" =0,2#0             

25



‘We make the following note about fractional indices: 

Al lxm,wehavethatfor b20 
n n n 

mo 1 
i bt o=b = (bmyn = fpm 

m 1 Iy 
ii pro=pn " = ([,n] = /By 

Then, 

N 

1£b >0, then b7 = b7 = (4b)" mez, neN 

. 

1b<0,then b7 = b7 = (Wb)", meZ ,ne {1,3,5,...} 
C————T ey 

  

  
42y 33 = 3252 o3 a3 1x3 (Q) X (@) = s x2y 

4 _ lex x 8x% 

258 

=128 4i9.3-4 
o 2 

_128 45,5 
25t 

_ lagxl? 

255 
  

otk 2 p T pren g 

A2 A xyiX? 22 
C2x2)3 (22 8x2Xdxy2x2  gybyd 

=t 8 
26 ot 

1 1,1 
b ’itfl:“’—z=6+l)x’-‘z=’-‘a‘-’+’f1:y+x 

xlyl L yo1r o ox oy 

(T R DR W Vi i POV i i Sy ] 

an-dxgntl  n=3x(3yitl _ gn-3xpwn+3 
Pl gion | gIn-ly(a2)2-n  g2n-lygé-2n 
Qn-3+@n+3)  gdn 

B i 
22n-1+(4-2n) 23 2 

  

B (a'3x 5126 

40859 1 s 
o (@) b 

9 
=a2-2x bdj 

21 
=ath 

1 

=" m 
atht 

  

Exercise 1.2.1 

i Simplify the following. 

  

3y? 2,33 b (.2_)3 + L 
N (4x3 X (@) 3a2) " sab 

1492 3 21 2+2 d (% X(Xyz)z 

2. Simplify the following. 

206 = 
2 106 b (&) 

16241 (ab)?¥ 
4 g2l 4 e 

B. Simplify the following. 

B G)s % G)z 5 (34 b 3743 

282h 510 9Ny 3nt2 
< (52)’! 27n



    (xm)yn 
4. Simplify D 

5. Simplify the following, leaving your answer in positive 
power form. 

    
6. Simplify the following. 

2+ !     x2+ 

  

(xt+h)' - 
h 

d (2-1)"x(x+1) 

Extra questions 

  

Indicial equations 

Why do indices turn up so often in applications? 

  

This is a complex question, but it does seem that the Universe 

has a preference for power laws! 

Biologists use power expressions to model animal populations: 

    

and so on. Is there anything behind this or is nature’s liking 

for indices just chance? 
1 

  

Solving equations of the form x* = 3, where the variable is 
the base, requires that we square both sides of the equation 

so that: 

However, when the variable is the power and not the base we 
need to take a different approach. 

  

Consider the case where we wish to solve for x given 

that 2* = 8. In this case we need to think of a value of x 

so that when 2 is raised to the power of x the answer is 8. 

Using trial and error, it is not too difficult to arrive at x = 3 

(22=2x2x2=8). 

Next consider the equation 3**! = 27. Again, we need to 
find a number such that when 3 is raised to that number, the 

answer is 27. Here we have that 27 = 33. Therefore we can 

rewrite the equation as 3¥+ ! = 33. 

As the base on both sides of the equality is the same we can 

then equate the powers, that is, 

3+ = 27:e5 3341 =33 

@x+1 =3 

©x=2 

27



AN 

3% = 8l 3% = 34 ® 

ox =4 

b 2X 5% = 250 ¢ 54 = 125 

b= 53 
Su =3 

1 1 c X = cmawig¥ = 4 
32 35 

©2¥ =27 
ex =5 

  

1y 
a (E] =16 (27) =16 

@2r =24 

©-x =4 

ox =4 

i.e. solution set is {-4}. 

b 391 = 3, /35 3+ = 33172 

o3l = 332 

extl = 

[
T
 

i.e. solution set is {0.5} 
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Exercise 1.2.2 

L Solve the following equations. 

) 

{x] 3% = 243} 

e {x| 7x=i} 
c {x| 8*=4} d 

¥ =Ll e {x| 3* 81} f {x| 4 32} 

  

2 Solve the following equations. 

. 7s=np {,| 3,21} 
4 

c {x[ 10 =0001} d {x] 9¥ =27} 

4x—1 
¢ x2 g {x] 25% = 5} 

g {x\ 16% = {x] 4~ =322} 

i {x| 972¥ =243} 

. 1 [g3x42)_,9x+2 3 Show that: 16(8 )=2 

Extra questions 

  

Drag is the force resisting the forward motion of vehicles such 
as aircraft. It is a 'square law' - the drag force is proportional 
to the square of the velocity. 

 



  

LOGARITHMS 

What are logarithms? 

Consider the following sequence of numbers: 
  

2(3(4|5(6|7| 8|9 10 

1632(64(128|256 |512| 1024 ... 

Sequence N 
  

©                           Sequencey |2 | 4 
  

The relationship between the values of N and y is given by 
y =2V, 

‘We can the above table, evaluate the product 16 x 64. 
    

Sequence N 
  

  

128|256 (5121024 | ... 

  

                  Sequence y | 2 
  

  

We start by setting up a table of values that correspond to the 

numbers in question: 
  

N| 4|6 

y| 16 | 64 

Sum(4 +6) =10 

Product = 1024 

  

          
  

From the first table of sequences, we notice that the sum of 

the ‘N sequence’ (i.e. 10), corresponds to the value of the 'y 

sequence’ (i.e. 1024). 

We next consider the product 16 x 64, again. Setting up a 
table of values for the numbers in the sequences that are 

under investigation we have: 
  

N| 3 5 Sum(3 +5) =8 

Product = 256 
  

TAEN 
  

What about 4 x 647 As before, we set up the required table of 

values: 
  

N| 2|6 

y| 4 | 64 

Sum(2 +6) =8 

Product = 256 
            
  

In each case the product of two terms of the sequence y 

corresponds to the sum obtained by adding corresponding 

terms of the sequence N. 

Notice that dividing two numbers from the sequence 
y corresponds to the result when subtracting the two 

corresponding numbers from the sequence N, 

e.g. for the sequence y:  512+32 = 16. 

for the sequence N:  9-5 = 4 

AND LOGARITHMS 

This remarkable property was observed as early as 1594 by 

John Napier. John Napier 

was born in 1550 (when his 

father was all of sixteen 

years of age!) He lived most 

of his life at the family estate 
of Merchiston Castle, near 
Edinburgh, Scotland. 

Although his life was not 

without ~controversy, in 

matters both religious and 

political, Napier (when 

relaxing from his political 

and religious polemics) 

would indulge in the study 
of mathematics and science. His amusement with the study of 
‘mathematics led him to the invention of logarithms. In 1614 
Napier published his discussion of logarithms in a brochure 
entitled Mirifici logarithmorum canonis descriptio (A 
description of the Wonderful Law of Logarithms’). Napier 

died in1617. 

  

It is only fair to mention that the Swiss instrument maker 
Jobst Biirgi (1552-1632) conceived and constructed a table 

of logarithms independently of Napier, publishing his results 

in 1620, six years after Napier had announced his discovery. 

One of the anomalies in the history of mathematics is the 
fact that logarithms were discovered before exponents were 

in use. 

In this age of technology, the use of electronic calculators 

and computers has reduced the evaluation of products 

and quotients to tasks that involve the simple push of a 

few buttons. However, logarithms are an efficient means of 
converting a product to a sum and a quotient to a difference. 
So, what are logarithms? 

Nowadays, alogarithm is universally regarded as an exponent. 

  

From the sequence table, we have that 27 - 128, so that 7 is 
the logarithm of 128 to the base 2. 

Similarly, 3¢ ~ 81, and so 4 is the logarithm of 81 to the 

base 3. 

  

That is, N is the logarithm of y to the base b, which 
corresponds to the power that the base b must be raised so 

that the result is y. 
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To determine the number log,32, we ask ourselves the 
following question: “To what power must we raise the number 
2, so that our result is 322” 

Letting x = log,32, we must find the number x such that 
2x = 32. 

  

Clearly then, x = 5, and so we have that log,32 

One convention in setting out such questions is: 

log,32 = x 2% =32 

©x =5 

As in part a, we ask the question “To what power must we 

raise the number 10, so that our result is 1000?” 

That is, x = log ;51000 & 10* = 1000 

ex =3 

So that log 41000 = 3. 

  

Now, x = log;729 &3 = 729 &x 

(This was obtained by trial and error.) 

Therefore, log,729 = 6. 

Although we have a fraction, this does not alter the process: 

  

Can we find the logarithm of a negative number? 

To evaluate log (—4) for some base a > 0, we need to solve the 

equivalent statement: 

x = log,(—4) & a* = —4 

However, the value of ¢* where a > 0, will always be positive, 

therefore there is no value of x for which a* = 4. This 

means that 

We can now make our definition a little stronger: 

N=logy & y=0b"y>0 

30 

          

a logx = 3&x = €7=20.09 

b log(x~2) = 05&x-2 = 

ex =2+ 

3.65 

  

c x = log,5=161 

  

The Nautilus 

The Nautilus is a very ancient (and we can infer, successful) 

sea creature. 

This is the fossil of an ammonite that appears to have been a 

precursor of the Nautilus. Note the logarithmic spiral shape. 

  
The different sizes of the segments probably result from the 

natural growth of the animal.



  

A nautilus in action: 

It is jet-propelled. 

  

Exercise 1.2.3 

1. Use the definition of a logarithm to determine the 

following. 

a log,36 b log;49 ¢ log ;243 

d log 64 e log (5) flog (l] 
t 28 39 

2. Change the following exponential expressions into 

their equivalent logarithmic form. 

a10* = 10000 b 1073 = 0.001 

cl0¥ = x+1 d107 =p 

e =x-1 f24x = y—2 

3. Change the following logarithmic expressions into 
their equivalent exponential form. 

alogyx =9 blogy = x clogyr = ax 

dlogz = x? elogy = 1-x 

4. Solve for x in each of the following. 

alogyx = 4 blog,9 = x clogx = % 

dlog3 =1 elg2=4 flogx=3 

5. Solve for x in each of the following, giving your answer 
to4d.p. 

alogx =4 b log,4 = x C]oglv=% 

dlog.e = % eloge =2 flog,e = -1 

Extra questions 

  

ExPONENTS AND LOGARITHMS 

THE ALGEBRA OF LOGARITHMS 

The following logarithmic laws are a direct consequence 
of the definition of a logarithm and the index laws already 

established. 

First law: The logarithm of a product 

Proof: Let M = log,x and N = log,y so that x = a and 
y=a". 

Then, xxy = aMxaV 

e xxy =aM*tN 

= log (xxy) = M+N 

© log (xxy) = log x+ log 

Originally, logarithms were viewed as a series. This led to the 
logarithmic scale. 

Linear Scale 

0 1 2 3 4 5 

Logarithmic Scale 

1 1T 1 
1 2 4 8 16 32 

The linear scale is arithmetic and the logarithmic scale is 
geometric. 

A pair of linear scales can be used to add numbers: In this 

case2+3=5. 

  
  

      

a
 

wd
 

e 

A pair of logarithmic scales can be used to multiply numbers. 
Inthiscase2x4=8 

  

  

  
  

4 

T T T 1 
2 2 8 16 32 

T L T 1 

Note that other multiplications by 2 can be read from the 

diagram. 
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CHAPTER 1 

This is a brief demonstration of the use of a slide rule: 

    

» log3x +log,(4x) = logs(x X 4x) 

= log34x2 

o This time we note that because the base is ‘2 and there 
is a ‘4’ in one of the logarithmic expressions, we could 
first try to remove the ‘4’ 

logzr+log2(4x) = log,x + (log,4 + log ,x) 

= logzx+2+logxx 

= 2log,x+2 

log,p? = log (pxp) = log p + log p 

I 2log p 

2x0.70 

1.40 I 

b log(p?q) = logp? +log,g 

= 2log p +log q 

= 140+2 

= 340 

¢ log,(apg) = log,a+logp+log,g 

=1+070+2 

=370 

A e e ey L R SRR Y] 

32   

log,x +logy(x +2) = 3¢ log,[xx (x+2)] = 3 

ox(x+2) =23 

©ox2+2xr=8 

©x2+2x-8=10 

S @E+4)(x-2) =0 
©x=-4orx =2 

Next, we must check our solutions. 

‘When x = -4, substituting into the original equation, we 
have: LH.S = log,(~4) +log,(—4+2) - which cannot be 

evaluated (as the logarithm of a negative number does not 
exist). Therefore, x = -4, is not a possible solution. 

‘When x = 2, substituting into the original equation, we have: 

LHS  =log,(2)+log,(2+2) 

= log,8 

=3 

=RHS 

Therefore, {x| log,x + log,(x+2) =3} = {2}. 

Second law: 

Proof: Let M = log,x and N = log, so that x = a¥ 

The logarithm of a quotient 

andy = aV. 

Then, T = 
¥ n

l
n
 

=
l
 x 

< IogaG = log x—logy



    

100x 
a log4100x —log,gxy = logm(—) = loEm(%) 

Note: We could then express log (100) as: 

log 100 —log gy = 2—log gy 

b log,8x3 — log,x2 + Iogze) 1032( )+ logz(x) 

log,8x + log z(fi) 

logz(sx X f) 

= log,8y 

Note: We could then express log,8y as: 

I 

log,8 + log,y = 3 +logyy. 

  

log,(x +2) ~log (x~ 1) = 1 &> log (’fi) = 
o\ —1 

@(’fl) - 10! 
x—1 

©x+2 = 10x-10 
12 = 9x 

ewx=2 
3 

Next, we check our answer. Substituting into the original 
equation, we have: 

LHS 

4 4 0.1 
I 242|- == Sy = = °gw(3 z) '°gm(a ) log, 52 log, 5 = log (3 *3) = 

- 1=RHS = log (10 

Therefore, {x| log ,(x+2) ~log y(x~1) =1} = {%} 

  

NTS AND LOGARITHMS 

Third law: The logarithm of a power 

Proof: This follows from repeated use of the First Law or it 

can be shown as follows: 

Let M = log x> aM = x & (aMy’ = x" 

(Raising both sides to the power of n) 

e aM = xn 

(Using the index laws) 

& nM = log 2" 

(Converting from exponential to log form) 

& nlog x = log x" 

  

log,x*y? = log x3 + log 2 

= 3logx+2log y 

=3x02+2x05 

=16 

T g (X)V2 2 Liog (X log, j,’; = loga(y 4) Zlogn(y 4) 

= tog (1)~ log "] 

1 = i[]ognx —4log ] 

= d02-4x05) 

=-09 

Fourthlaw:  Change of base 

Proof: Let log,b = N sothat a¥ = b 
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CHAPTER 1 

Taking the logarithms to base k of both sides of the equation 
we have: 

log,(aV) = log;h <> Nlog,a = logb 

  

I 
&N = og b 

loga 

logb 
However, we have that log b = N, therefore, log b = @z 

Other observations include: 

MISCELLANEOUS EXAMPLES 

  

    

a log 64 = 3> x> = 64 

oxd =4 

ox =4 

b logx —log o(x =2) = 1 & log (-L) =1 
10 x=2, 

X & —=10! 
x-2 

& x = 10x-20 

& -9x = -20 

20 
@x == 

9 
Check: 

  

a Given that 2+ log v = 4log o 

then 2 = 4log oy~ log ¢ 

&2 = log gyt -log ¢ 

©2 = log (Ld) 
10' x 

102 = 

g 
=
%
 

oyt = 

oy =4/100x (asy>0) 

x 

b Given that logx = log(a—by)—loga 

then logx = loga—_abz 

a—by 
a 

I ox 

&ax = a-by 

by a—ax 

ey =300 

  

Taking the logarithm of base 10 of both sides 5% = 21 
gives: 

5% = 27 1 & log 5% = log g2*+ ! 

e xlog5 = (x+1)log 2 

© xlog 5 -xlog,)2 = log,,2 

© x(log o5~ log,y2) = log,2 

log 52 

i log 45 —log 2 

And so, x = 0.75647... = 0.76 (to 2d.p). 

log 2 
m}, answer to 2 d.p = {0.76} Exact answer = {



    

We first note that 6e2*—17xe¥+12 can be written as 
6xe2X—17 xe¥ +12. 

This in turn can be expressed as 6 X (e¥)>— 17 x e + 12 

Therefore, making the substitution y = e*, we have that 

6x(e")2—17xe +12 = 6y2—17y+12 (ie. we have a 

‘hidden’ quadratic). 

Solving for y, we have: 
62— 17y+12 = 0 (2y-3)3y—4) = 0 

So that y=%ory=§ 

However, we wish to solve for x, and so we need to substitute 

Taking logs of both sides of the equation 82 = 47 we 
have 

2. log8™ ™! = logd® Fes (2x + 1)log8 = (5-x)log4 

& (20 + Dlog2’ = (5-x)log2” 

32+ 1)1?{4 = 2(5-;)}«@2 

Therefore, we have that 6x+3 = 10-2x & 8x = 7 

LK 

o
I
 

TS AND LOGARITHMS 

Exercise 1.2.4 

1 Without using a calculator, evaluate the following. 

a log ,8 + log 4 b logg18 + log 2 

¢ logs2 +logs125  d log,,18 —log,6 

‘Write down an expression for loga in terms of logh 
and loge for the following. 

  

a b a= b 

c d a=bie 

Given that logx = 0.09, find: 

a log x? b logaw/x ¢ log G‘) 
a 

Express each of the following as an equation that does 
not involve a logarithm. 

a log,x = log,y + logyz 

b log v = 2log ¥ 

c log,(x+1) = log,y + log,x 

Solve the following equations. 

a Iogz(x+1)—log2x = log,3 

b log (x+1)— log ¥ = log o3 

¢ logy(x1)-log(x—1) = 4 

Simplify the following 

a log ,(2x) + log,w b log gx — log4(7y) 

Solve the following 

a  logy(x+7)+logyx =3 

b logy(x+3)+logy(x+5) = 1 
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c log o(x +7) + log o(x—2) = 1 16.  If: log,(x+3)=log,xr—4 , prove that: 

8. Solve for x. 

a logyx? = (log,x)? b logyx® = (logyx)? Extra questions 

9. Solve the following, giving an exact answer and an 
answer to 2 d.p. 

a 2 =14 b 10 = 8 

€ =125 d L - 12   

Answers 

  

10.  Solve for x. 

a (log,x)>—logyx—2 = 0 

b log,(2**1-8) = x 

11.  Solve the following simultaneous equations. 

X =5x-9 b log gv —log oy = 
a 

log,11 =y x+y? =200 

12.  Express each of the following as an equation that does 

not involve a logarithm. 

a log,x = logy—log,z b 3logx = log,y 

13.  Solve the following for x. 

a ln(x+1)—Inx = 4 b In(x+1)-Inx = In4 

14.  Solve the following for x. 

=21 f-2-38 

15.  Solve the following for x. 

a e -3e¥+2 =0 

b e¥-4er-5=0 
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Permutations 

ermutations represent a counting process where the order 

must be taken into account. 

For example, the number of permutations of the letters A, B, 

Cand D, if only two are taken at a time, can be enumerated as 

AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, BC 

That is, AC is a different permutation from CA (different 

order). 

Instead of permutation the term arrangement is often used. 

This definition leads to a number of Counting Principles. 

Multiplication principle 

Rule 1: 

For example, if a die is rolled twice, there are a total of 6* = 36 
possible outcomes. 

Rule 2: 

For example, if a person has three different coloured pairs 

of pants, four different shirts, five different ties and three 

different coloured pairs of socks, the total number of different 

ways that this person can dressis equalto 3x 4 x 5 x 3 = 180 

ways. 

Rule 3: 

  

Because of the common usage of this expression, we use the 

factorial notation. That is, we write: 

nl=nxn-1)xn-2)x(n-3)x..x3x2x1,1n>0 

which is read as n factorial. Notice also that 0! is defined as 
lie 0'=1. 

For example, in how many ways can 4 boys and 3 girls be 
seated on a park bench? In this case any one of the seven 
children can be seated at one end, meaning that the adjacent 

position can be filled by any one of the remaining six children, 
similarly, the next adjacent seat can be occupied by any one of 

the remaining 5 children, and soon . ... 

Therefore, in total there are: 

Tx6x5x4x3x2x1 = 7! = 5040 

possible arrangements. 

Using the TI-NSpire, we have: 

    

  

     

  

F11: Actions. 
i 

  

[597: Matrix & Vector 
Se8: Finance 
[f]9: Functions & P 
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If using a Casio graphic calculator, the permutation functions 
can be accessed in run mode by using the OPTN key, F6 for 

‘'more’ and F3 for PROB. 
  

  

R       

Example 1.3.1 

Jai wishes to get from town A to town C via town B. 
There are three roads connecting town A to town B and 
4 roads connecting town B to town C. In how many 
different ways can Jai get from town A to town C? 

A 

We ‘start by visualizing i G 
this situation: 

A 
Consider the case where Road | C 

Jai uses Road 1 first. B 

The possibilities are: 

Road 1 thena, Road 1 then b, 

Road 1 thenc¢, Road 1 thend. 

That is, there are 4 possible routes. Then, for each possible 

road from A to B there are another 4 leading from B to C. 

Allin all, there are 4 + 4 +4 = 3 x4 = 12 different ways Jai 

can get from A to C via B. 

Example 1.3.2 

Using the following street 
network, in how many 

different ways cana 
person get from point P 

to point Qif they can only 
move from left to right? 

In travelling from P to Q there are: 

3=1x3x1 paths (along P to A to Bto Q) 
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6=1x3x2x1paths (along Pto Cto Dto Eto Q) 

2 =1 x 2 paths (along P to F to Q) 

In total there are 3 + 6 + 2 = 11 paths 
    

Example 1.3.3 
A golfer has 3 drivers, 4 tees and 5 golf balls. In how 
‘many ways can the golfer take his first hit? 

The golfer has 3 possible drivers to use and so the first task 
can be carried out in 3 ways. 

The golfer has 4 possible tees to use and so the second task 

can be carried out in 4 ways. 

The golfer has 5 golf balls to use and so the third task can be 
carried out in 5 ways. 

Using the multiplication principle, there are 3 x 4 x 5 = 60 

ways to take the first hit. 

Permutations 

Based on the definition given in §1.3 we have the following 
rule: 

Rule 4: 

  

For example, the total number of arrangements of 8 books on 

a bookshelf if only 5 are used is given by: 

  

When using the TI calculator, use MENU, 5, 2:



    npr(8,5) 

or using Casio (F2): 

    

a We have 5 boys to be arranged in a row with certain 

constraints. 

The constraint is that we can only use 3 boys at a time. In other 
words, we want the number of arrangements (permutations) 

of 5 objects taken 3 at a time. 

  

From rule 4: n=5r=3, 

s, _ sl 
Therefore, number of arrangements = “P3 = G 

120 =120~ 3 6! 

b This time we want the number of arrangements of 5 

boys taking all 5 at a time. 

From rule 4: n=5r=5, 

Therefore, number of arrangements = SPS = (55—'5)| 

_ 120 _ 
= - 120 

e | 

Box method 

Problems like Example 1.3.4 can be solved using a method 
known as “the box method”. In that particular example, part 

(a) can be considered as filling three boxes (with only one 

object per box) using 5 objects: 

Box 1 Box 2 Box 3 

The first box can be filled in 5 different ways (as there are 5 
possibilities available). Therefore we ‘place 5’ in box 1: 

Now, as we have used up one of the objects (occupying box 1), 
we have 4 objects left that can be used to fill the second box. 

So, we ‘place 4" in box 2: 

Box 1 Box 2 Box 3 

L] 
At this stage we are left with three objects (as two of them 
have been used). This means that there are 3 possible ways 
in which the third box can be filled. So, we ‘place 3’ in box 3: 

Box 1 Box 2 Box 3 

[ e ] 
This is equivalent to saying, that we can carry out the first 

task in 5 different ways, the second task in 4 different ways 

and the third task in 3 different ways. Therefore, using the 
multiplication principle we have that the total number of 

arrangements is 5 4 3 = 60 

  

    

5 ! 
Comparing this to the expression "P3 = (Si—SN we have: 

50 _ 5! _5x4x3x2x1 
(I3 2 2x1 

_5x4x3 

=60 

i.e. the last step in the evaluation process is the same as the 

step used in the ‘box method. 

  

We have a situation where there are five positions to be filled: 

Letter 
  

      

That is, the first position must be occupied by one of 26 
letters, similarly, the second position must be occupied by 
one of 26 letters. The first number must be made up of one 
of nine different digits (as zero must be excluded), whilst the 

other two positions have 10 digits that can be used. Therefore, 

using Rule 2, we have: 

Total number of arrangements = 
26x26x9x10x 10 = 608400 . 

39



  

a Consider the five boxes: 

Box1 Box2 Box3 Box4 Box5 

LI 
Only the digits 4 and 5 can occupy the first box (so as to 
obtain a number greater than 40,000). So there are 2 ways to 

fill box 1: 

Box1 Box2 Box3 Box4 Box5 

  

Box 2 can now be filled using any of the remaining 5 digits. 
So, there are 5 ways of filling box 2: 

Box1 Box2 Box3 Box4 Box5 

  

‘We now have 4 digits left to be used. So, there are 4 ways of 
filling box 3: 

Box1 Box2 Box3 Box4 Box5 

  

Continuing in this manner we have: 

Box1 Box2 Box3 Box4 Box5 

    

Then, using the multiplication principle we have 
2x5x4x3x2 = 240 arrangements. 

Otherwise, we could have relied on rule 4 and obtained 

2x°P, = 2x120 = 240 

As in part a, only the digits 4 and 5 can occupy the first box. 

b If repetition is allowed, then boxes 2 to 5 can each be 
filled using any of the 6 digits: 

Box1 Box2 Box3 Box4 Box5 

Using  the  multiplication  principle  there  are 
2X6x6x6x6 = 2592 arrangements. 

However, one of these arrangements will also include the 

number 40 000. Therefore, the number of 5 digit numbers 
greater than 40,000 (when repetition is allowed) is given by 

2592 -1=2591. 

e N N T A e S (e | 
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n! "po = T L Py = 60 s = 60 

a(n—D)(n-2)(n-3)! _ 
o 3 60 

@ n(n-1)(n-2) = 60 

o nd=3n2+2n = 60 

©nd-3n+2n-60 = 0 

Using the a TI calculator to 8! 
solve this polynomial, we 
have:n=5 

With a Casio model, use the ‘;é Hi’gg Hegrds 
Equation Module (A), F2 

Polynomial: 

   

    

  

  

    

The word ‘HIPPOPOTAMUS’ is made up of 12 letters, 
unfortunately, they are not all different! This means that, 

although we can swap the three Ps with each other, the word 

will remain the same. 

Now, the total number of times we can rearrange the Ps (and 
not alter the word) is 3! = 6 times (as there are three Ps). 

‘Therefore, if we ‘blindly’ use Rule 2, we will have increased 

the number of arrangements 6 fold. 

Therefore, we will need to divide the total number of ways of 
arranging 12 objects by 6. 

Thatis, 2! = 79833600,



  

However, we also have 2 Os, and so, the same argument holds. 

So that in fact, we now have a total of: 

12! 3 39916800 arrangements. 

This example is a special case of permutations with 
repetitions: 

Rule 5: 

First we must treat the 3 oranges as one unit and there are 3! 

ways to arrange the oranges. Hence, there are 8 units which 

can be permuted in 8! ways when they are arranged in a 
straight line. 

Using Rule 2, we have that the total number of possible 

arrangement 3!x8! = 241 920. 

First we must arrange the oranges first and there are 8! = 
40 320 ways. Now there are 9 positions to arrange the 8 apples. 

Hence the apples can be arranged in °2 = 362 880 ways. 

Using Rule 2, we have that the total number of 8!x * 4 possible 
arrangements (=1.46x10"). 

  

Lotteries 

  

The TattsLotto game has forty-five balls numbered 1 to 45 

from which eight are randomly selected. Is this selection with 
replacement? Does the order matter? What are your chances 

of winning with a single "game"? 

Exercise 1.3.1 

L A, B and C are three towns. There are 5 roads linking 

towns A and B and 3 roads linking towns B and C. 

How many different paths are there from town A to 
town C via town B? 

2. In how many ways can 5 letters be mailed if there are: 

a 2 mail boxes available? 

b 4 mail boxes available? 

3. There are 4 letters to be placed in 4 letter boxes. In how 

‘many ways can these letters be mailed if: 

a only one letter per box is allowed? 

b there are no restrictions on the number of 
letters per box? 

4 Consider the cubic polynomial: 
px) = ax3+bx2-5x+c. 

a If the coefficients, a, b and ¢ come from the 
set {-3, -1, 1, 3}, find the number of possible 

cubics if no repetitions are allowed. 

b Find the number of cubics if the coefficients 
now come from { -3, -1, 0, 1, 3} (again without 

repetitions). 

5. The diagram p c 
  

alongside  shows 
the possible routes 
linking towns A, B, 

Cand D. 

      

M



CHAPTER 1 

10. 

11. 

12. 

13. 

14. 

15. 
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A person leaves town A for town C. How many 

different routes can be taken if the person is always 
heading towards town C? 

In how many different ways can Susan get dressed if 

she has 3 skirts, 5 blouses, 6 pairs of socks and 3 pairs 
of shoes to choose from? 

In how many different ways can 5 different books be 
arranged on a shelf? 

In how many ways can 8 different boxes be arranged 

taking 3 at a time? 

How many different signals can be formed using 3 
flags from 5 different flags. 

Three Italian, two chemistry and four physics books 

are to be arranged on a shelf. 

In how many ways can this be done if: 

a there are no restrictions? 

b the chemistry books must remain together? 

@ the books must stay together by subject?. 

Find n if "P, = 380. 

Five boys and five girls, which include a brother-sister 
pair, are to be arranged in a straight line. Find the 

number of possible arrangements if: 

a there are no restrictions. 

b the tallest must be at one end and the shortest at 

the other end. 

c the brother and sister must be: 

i together i separated. 

In how many ways can the letters of the word 
Mississippi be arranged? 

In how many ways can three yellow balls, three red 

balls and four orange balls be arranged in a row if the 
balls are identical in every way other than their colour? 

In a set of 8 letters, m of them are the same and the 

rest different. If there are 1680 possible arrangements 

of these 8 letters, how many of them are the same? 

  

Combinations 

Combinations represent a counting process where the order 

has no importance. For example, the number of combinations 

of the letters A, B, Cand D, if only two are taken at a time, can 

be enumerated as: 

AB, AC, AD, BC,BD, CD, 

That is, the combination of the letters A and B, whether 

written as AB or BA, is considered as being the same. 

Instead of combination the term selection is often used. 

For example, in how many ways can 5 books be selected 

from 8 different books? In this instance, we are talking about 

selections and therefore, we are looking at combinations. 
Therefore we have, the selection of 8 books taking 5 at a time 

is equal to 

  

8) __ 8 _ 
(5 (8-5)!s! 

Using the TI-NSpire we can make use of the nCr function: 

(%4 1: Actions M 
[152: Number ¥ 

x=3: Algebra » 

{14: Calculus » 
1 

2: 

  

   

  

  

   
: Factorial (1) 

X 6: Statistics : Permutations 
B9 7: Matrix & Vector 
S €8: Finance 
[f2)9: Functions & Programs [5: Distributions _» 

        

11   nCr(8,5) 56   

or using Casio: 

  

  
First we look at the number of ways we can select the women 

members (using Rule 6):



  

We have to select 3 from a possible 5, therefore, this can be 

done in SC3 = 10 ways. 

Similarly, the men can be selected in 4C2 = 6 ways. 

Using Rule 2, we have that the total number of possible 
committees = "Cy ><4C2 =60. 

  

Husband included Case 1: 
  

Simenlel committee 
  

  
Husband 

      
  

    

2 
S| 

| 

2 4 women left 
  

Yovife removed 

If the husband is included, the wife must be removed (so that 

she cannot be included). We then have to select 2 more men 

from the remaining 6 men and 2 women from the remaining 

4 women. 

‘This is done in ECZ x 4C2 = 90 ways 

A husband removed 
  

6 men left 3 ‘|3 _committee   
  

Wife 
      | 

4 women left | 1 

  

      

Case 2: Wife included 

If the wife is included, the husband must be removed. We 
then have to select 3 men from the remaining 6 men and 1 

woman from the remaining 4 women. 

This is done is 6C3 ><4C| = 80 ways 

Therefore there are a total of 602 x ACQ + 6C3 x'c 1 =90 +80 
=170 possible committees. 

    

Since one can is always included in the selection, it can 

be removed from the original collection of 15 cans. For 

the remaining 14 cans, we must now select 4 more cans to 
complete the selection. Hence, we have C,=1001 ways to 
make the selection. 

  

Since one can is always excluded in the selection, it can 

be removed from the original collection of 15 cans. For 

the remaining 14 cans, we must now select 5 more cans to 

complete the selection. Hence, we have "C,=2002 ways to 
make the selection. 

Exercise 1.3.2 

1 In how many ways can 5 basketball players be selected 
from 12 players? 

2 A tennis club has 20 members. 

a In how many ways can a committee of 3 be 
selected. 

b In how many ways can this be done if the 

captain must be on the committee? 

3. In how many ways can 3 red balls, 4 blue balls and 5 

white balls be selected from 5 red balls, 5 blue balls 
and 7 white balls? 

4. In how many ways can 8 objects be divided into 2 
groups of 4 objects? 

5. A cricket training squad consists of 4 bowlers, 8 

batsmen, 2 wicket keepers and 4 fielders. 

From this squad a team of 11 players is to be selected. 

In how many ways can this be done if the team must 

consist of 3 bowlers, 5 batsmen, 1 wicket keeper and 2 

fielders? 
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6. A class consists of 12 boys of whom 5 are prefects. How 
many committees of 8 can be formed if the committee 
is to have: 

a 3 prefects? 

b at least 3 prefects? 

An equal number of boys and girls are trying out for 

8 spots on a sport team. If the team must consist of at 

least 5 girls, then how many different possible teams 
can result if 7 boys try out? 

Show that: 

IXU42X 243X 3+ +(7=1) X (77— 1)+ 2 X 71l 

=(n+1)1-1! 

Exercise 1.3.3 

Five different coloured flags can be run up a mast. 

a How many different signals can be produced if 
all five flags are used? 

b How many different signals can be produced if 

any number of flags is used? 

In how many different ways can 7 books be arranged 
in a row? 

In how many different ways can 3 boys and 4 girls be 

seated in a row? In how many ways can this be done if: 

a no two girls are sitting next to each other? 

b the ends are occupied by girls? 

In how many different ways can 7 books be arranged 

in a row if: 

a three specified books must be together? 

b two specified books must occupy the ends? 

A school council consists of 12 members, 6 of whom 

are parents and 2 are students, the Principal and the 
remainder are teachers. The school captain and vice- 

captain must be on the council. If there are 10 parents 

and 8 teachers nominated for positions on the school 

council, how many different committees can there be? 

A committee of 5 men and 5 women is to be selected 
from 9 men and 8 women. 

12. 

13. 

14, 

a How many possible committees can be formed? 

b Amongst the 17 people, there is a married 
couple. If the couple cannot serve together, how 

many committees could there be? 

A sports team consists of 5 bowlers (or pitchers), 9 

batsmen and 2 keepers (or back-stops). How many 

different teams of 11 players can be chosen from the 

above squad if the team consists of: 

a 4 bowlers (pitchers), 6 batsmen and 1 keeper 
(back-stop)? 

b 6 batsmen (pitchers) and at least 1 keeper (back- 

stop)? 

Twenty people are to greet each other by shaking 
hands. How many handshakes are there? 

How many arrangements of the letters of the word 
“MARRIAGE” are possible? 

How many arrangements of the letters of the word 
“COMMISSION” are possible? 

A committee of 4 is to be selected from 7 men and 6 

women. In how many ways can this be done if: 

a there are no restrictions? 

b there must be an equal number of men and 

women on the committee? 

c there must be at least one member of each sex 

on the committee? 

Prove that: 

My SO & ) ) G 
n+ 1 ” n b P, ="P+rx"p,_,. 

A circle has n points on its circumference. How many 

chords joining pairs of points can be drawn? 

A circle has n points on its circumference. What is the 

maximum number of points of intersection of chords 
inside the circle? 

n 

a Show that 2" = 2 (7) 

=0 
b In how many wa’ys can 8 boys be divided into 

two unequal sets?



  

16.  Whilst at the library, Patrick decides to select 5 books 

from a group of 10. In how many different ways can 

Patrick make the selection? 

17. A fish tank contains 5 gold-coloured tropical fish and 
8 black-coloured tropical fish. 

a In how many ways can five fish be selected? 

b If a total of 5 fish have been selected from the 
tank, how many of these contain two gold fish? 

Extra questions for Exercises 1.3.2 & 1.3.3 

  

The Binomial Theorem 

The binomial theorem is an example of the use of 
combinatorics. 

Bracketed expressions such as (2x—3)7 are said to be 

“‘binomial’ because there are two terms in the bracket (the 

prefix bi means two). Such expressions can be expanded 

using the distributive law. In a simple case such as (a + 5)? 

the distributive law gives: 

(a+b)2 = (a+b)a+b) 

= a’+ab+ba+bh? 

= a?+2ab+b? 

The distributive law states that each term in the first bracket 

must be multiplied by each term in the second bracket. 

The next most complicated binomial can be evaluated using 

the previous result: 

(a+b)® = (a+b)(a+b)? 

= (a+b)(a*+2ab+b?) 

= a*+2a2b +ab?+a*b +2ab? + b3 

a¥+3a2b+3ab*+ b3 
Similarly, the fourth power of this simple binomial expression 

can be expanded as: 

(a+b)* = (atb)(a+tb)? 

= (a+b)(a®+3a*h+3ab®+ b3) 

= at+3a%h+3a?b2+ ab® + aPb +3a2b? + 3ab3 + b* 

= a*+4a’b + 6a%b + 4ab®+ b* 
The calculations are already fairly complex and it is worth 
looking at these results for the underlying pattern. There 

are three main features to the pattern. Looking at the fourth 

power example above, these patterns are: 

The powers of a. 

These start at 4 and decrease: a*, a% a2 a', a”. Remember 
that a® = 1 

‘The powers of b. 

These start at 0 and increase: 59, b1, b2, b3, b* . Putting these 

two patterns together gives the final pattern of terms in which 
the sum of the indices is always 4: 

B e M ool ¥l Fo A 

The coefficients complete the pattern. 

These coefficients arise because there is more than one way of 
producing most of the terms. Following the pattern begun 

above, produces a triangular pattern of coefficients known as 

Pascal’s Triangle. Blaise Pascal 
(1623-1662) ~ developed ~ early 

probability theory but is lucky to 

have this triangle named after him 

as it had been studied by Chinese 
mathematicians long before he 

was born. 

So, if we continue our expansions 

(up to and including the sixth 
power) we have the following: 

  

(x+a)? = 1 

(x+a) = Ix+la 

(x+a)? = 1x2 +2ax + 1a? 

(x+a)* = 133+ 3x2a + 3xa? + 1a° 

(x+a)t = 1x4 + 4x3a + 6x2a% + 4xa® + 1a* 

(x+a)® = 1xS+5xta+ 10x3a2 + 10x2a3 + 5xat + 1a° 

(x+a)® =126+ 6x5a+ 15xa? + 20x3a3 + 15x2a* + 6xa° + 145 

etc. etc. ete. 

Now consider only the coefficients for the above expansions. 
Writing down these coefficients we reproduce Pascal’s 

triangle: 

etc. 
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The numbers in the body of the triangle are found by adding 
the two numbers immediately above and to either side. 

Analternative to using Pascal’s Triangle to find the coefficients 
is to use combinatorial numbers. If expanding (a+b)3 the 

set of coefficients are: 

@=+0-26) =000~ 
which are the same as those given by Pascal’s Triangle. 

Most calculators can do this. 

Making use of Pascal’s triangle we first determine the required 

coefficients: 

A 0 10 

‘Write down each term: 

B Xy Xy By Ky K 

Combine the two steps: 

X590+ 6x°y! + 152 + 20°)° + 1557 + 6x'y° + Xf 

We can also combine the two steps into one: 

(x+y)° =°CxXY +°Cxy' +°Cx'y* +°Cxy’ +.. 
wt SC Y+ SC Y + C XY 

=290+ 6% + 15 + 2059 + 155" + 631y + 0P 

‘With practice, you should be able to expand such expressions 
as above. 

What happens if we have the difference of two terms rather 
than the sum? For example, what about expanding (x—a)®? 
The process is the same except that this time we rewrite the 
expression (x—a)? as follows: 

(x=a)® = (x+(-a))° 

So, how do we proceed? Essentially, in exactly the same way. 

Making use of Pascal’s triangle we first determine the required 
coefficients: 
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Notice that Pascal's triangle does not 
change due to the change in sign and 
50 the coefficients remain the same 
whether itis a sum or difference. 

‘Write down each term: 

@@ Wi-a) @ a)? (@)*-a)? 
@'Cat (0%-a)® 

e, -xta Bar X2 xat  -d® 

Combining the coefficients and the terms we have: 

(x—a)5 = x5-5x%a+ 10x3a? — 10x2a3 + 5xa* - a® 

  

a Making use of Pascal’s triangle we first determine the 
required coefficients: 

    510105 

Write down each term: 

40} (402(-3) (40)(-3)? (-3)° 

64x3  —48x? 36x -27 

Combining steps 1 and 2 we have: 

(4x-3)3 = 1x64x3+3x-48x2+ 3 x 36x + 1 x-27 

64x3 — 144x2 + 108x — 27 

b Ag with (a), the term pattern must be built on (2x) and 

(2x~%)’=1x(21)’( 2)°+3x(2x)‘(~%)l+." 
x 

...+3><(2x)'(_
%)zflx(zx)a(_%]

s 

=8x3—24x+§f% 
X X 
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Exercise 1.3.4 

L. Expand the following binomial expressions: 

a (b+e)* b (a+g)? 

c (1+y? d (2+x)* 

e @+2x)? f (2x—4)% 

g (2+’;‘)4 h (2x-5)3 

i (3x-4) j (3x-9)3 

k (x+6) 1 (b+3d) 

m Gx+apyt | (x+3p)° 

o (2p + 5)3 P (xz - ;2[)4 

q (q + 1%)5 r (x 5, 5)3 

The general term 

Recall that: 

We have seen the relationship between Pascal’s triangle and 
its combinatorial equivalent. From this relationship we were 
able to produce the general expansion for (x+a)". 

That is, 

(e+a” =( ” )z” +(”)x" 'a+.,.+(”)x” ‘@ +.ta" 
0 1 r 

‘Where the first term, 7, =x" 

the second term, 1, = ('I’)x"’ la 

the third term, 73 = (;')x" ~242 

the rth term, = (rfl)x"‘("‘)a"‘ 

‘The (r +1)th term is also know as the general term. 

. - 

It is common in examinations for questions to only ask for a 
part of an expansion. This is because the previous examples 
are time consuming to complete. 

  

The fifth term is given by 7;. Using the general term, this 
means that r+ 1 = 5&r = 4. 

For this expansion we have that n = 10, therefore, 

= (10)(xy10-4 3)4 - 65 16 15 ( 4 )(x) 2 210 xx0x 2 

= 3360x2 

Therefore the fifth term is 75 = 3360x>. 

  

In this case we want the term independent of x, that is, the 
term that involves x°. 

Again, we first find an expression for the general term, 

ot = (S5 

= (§)@s et reurery 
- (‘:)Zs —r(1yy6-r-2 

= (i)zé—r(_l)rxé—.‘ir 

Notice how we had to separate the constants and the x term. 

Next, we equate the power of x in the expansion to 0: 

6-3r=0er=2. 

‘We therefore want: 

= (2)25_1(71)2,‘64 = 15X 16X 1xx0 = 240- 

So, the term independent of x is 240. 
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Exercise 1.3.5 

1. Find the terms indicated in the expansions of the 

following expressions. 

Expression Term 

a (x+4)° » 

b ) ¥5y? 

c (2x-1)8 x3 

4 (x-2)8 . 

e (2-3p»)t Pt 

£ -39 e 

Y 
g (3,;7;) P 

2. Find the coefficients of the terms indicated in the 

expansions of the following expressions. 

Expression Term 

a (2x-5)8 3 

b (5x—2y)% 2yt 

c (x+3)° 3 

4 (@r-39° r'q 

3)8 i 
e (Zx —;) P—z 

N Ge-) ” 

3. Use the first three terms in the expansion of a+x0t 
4 

to find an approximate value for LOI% Rind the 

percentage error in using this approximation. 

4, a Write the expansion of (5 +2x)6. 

b Use the first three terms of the expansion to 
approximate 5.26. 

c Find the absolute error in this approximation. 

d Find the percentage error in this approximation. 
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5. Find the coefficient of x~ in the expansion of 
6 

(x- 1)3(1 +x) 
X 

1310 
6. Find the constant term in the expansion of (X - Z) 

1 12 

7 Find the constant term in the expansion of (3-\‘ = ;) 

8. Find the term independent of x in the expansion of 

@ »x)s[i - \')6 
3x 

9 Find the term independent of x in the expansion of 

N1, P (D) x/) \2x 

a 3 a 3 . 
10.  Inthe expansion of (x = ;) [x * ;) ,where aisa non- 

zero constant, the coefficient of the term in x~2 is -9 
times the coefficient in x?. Find the value of the 
constant a. 

11.  Ifthe coefficient of the x? in the expansion of (1 - 3x)" 
is 90, find n. 

12.  Three consecutive coefficients in the expansion of 
(1+x)" are in the ratio 6 : 14 : 21. Find the value of n. 

13.  Findtheindependentterm in the following expansions: 

3 5 6 
a[,,+l] [V,l) b (u-»l-%) 

YNy 2x 

14.  In the expansion of (1+ax)” the first term is 1, the 

second term is 24x and the third term is 252x2. Find 
the values of a and n. 

15.  In the expansion of (x +a)3(x - 5)°, the coefficient of 
7 is -9 and there is no x® term. Find a and b. 

16.  The first three terms in the expansion of (1+av)" are 
given below. Find the value of a and n. 

a 1-18x+135x"... 

5 10 
b H+Zx+—at . 

3 9 

¢ l+aVar+iat. 

2V2 1, 
d 1- ix +-x 

Answers 

 



  

The principles of Mathematical 

Induction and proofs 
Induction is an indirect method of proof which is used in 

cases where a direct method is either not possible or not 

convenient. It involves the derivation of a general rule from 
one or more particular cases, i.e. the general rule is induced. 
This is the opposite to deduction, where you use the general 

rule to provide detail about a particular case. For example, 
we know that 60 is divisible by 1, 2, 3, 4, 5 and 6, but does it 

follow that 60 is divisible by all positive integers? 

  

This can be checked, as the positive odd integers form an 

arithmetic progression (see 1.1) with @ = 1 and d = 2. The 

sum of the first n terms is given by: 

8 = g(u +1) where a is the first term, / is the last term. 

= ’—Z1(l+2n—\) 

=2 

In this case the general result was easy to guess, but remember 

that a guess is not a proof. Thankfully in this example we had 
a method (sum of an AP) to verify our guess. This will not 

always be the case. 

Consider the expression 4n®— 1852+ 32n - 15 for values of n 
from 1 to 4 as shown in the table below: 
  

n 1 2 3 4 

4n®—18n+32n-15 3 9 27 81 
  

              

The expression appears to produce the successive powers of 

3, and so we could assume, based on the results in this table, 

that 4n®—18n2+32n—15 = 37, 

Can we then say that this will always be the case, and if so, 

what would you predict the value of the expression to be 

when 1 = 57 Check to see if your prediction is correct. 

Many  formulae 

which  we may 

guess or develop 
from simple 

cases can  be 

proved using 

the principle of 
mathematical induction. 

| o] ol = 
| ‘ etc. 
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PTER 1 

This method of proof relies upon a similar principle to that 
of ‘domino stacking’ In the process of domino stacking, one 
domino s first pushed over, thus causing a series of dominoes 

to fall. Before each successive domino will fall, the preceding 
domino must fall. 

‘With induction, for each expression to be true, the expression 
before it must also be true. The process can be summarized 
into four steps: 

Step 1: the first expression must be true (the first domino 
falls) 

Step 2: assuming that a general expression is true (assume 

that some domino in the series falls) 

Step 3: prove that the next expression is true (prove that the 

next domino in the series falls) 

Step 4: if all of these events happen then we know by 
induction that all of the expressions are true and thus the 

original formula is true (all the dominoes will fall). 

  

First we need to state what our proposition is. We do this as 
follows: 

Let P(n) be the proposition that 1 +3 +5+ 7+ ...+ (2n - 1) 
=n foralln#=1. 

Next we proceed with our four steps: 

Step1: testforn=1 

LHS =1 AND RHS = 1’= 1, .. LHS = RHS 

+. the proposition P(n) is true for n = 1 (the first domino 
falls!) 

Step 2:  assume that P(n) is true for n = k (a general domino 

falls) 

ie. 1+3+5+7+...+(2k-1)=# 

Step 3: test the proposition for n = k + 1 (prove that the 
next domino falls) 

i.e. we wish to prove that 1 +3 +5+ ... 

et k- +{2(k+ 1) -1} =(k+ 1) 
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Now, LHS =1+3+5+...+(2k-1)+ (2k+1) 

=kR+Qk+1)(as 1+3+5+...+(2k-1) =k 

(from Step 2) 

=(k+1) 

=RHS .. P(n)istrueforn=k+1 

Step 4: Thus, if the proposition is true for n = k (Step 2), then 
it is true for n = k + 1. As it is true for n = 1, then it must be 
true for n =1+ 1 (n = 2). As it is true for n = 2 then it must 

hold for n=2 + 1 (n = 3) and so on for all positive integers n. 

An alternative way of looking at mathematical induction is 
to think of the problem as a series of assertions. If the first 
assertion is true, and then each assertion which is true is 

followed by a true assertion, then all of the assertions in the 

sequence are true. 

    Step 1: The formula is actually a series of assertions: 

  

1 
1 = -X1x2 ZX1x 

n=2: 1+2 =%><2><3 

n=3: 1+2+3 :%x3x4etc. 

The first assertion is obviously true so we now need to prove 
that the assertion following each true assertion is itself true. 

Step 2: Suppose the k™ assertion is true, 

_ kkt1) 
ie l+2+3+..+k 2 

Step 3: Now add the (k + 1)" term i.e. (k + 1) to both sides of 

this equation, obtaining: 

rzess ks Ger ) = B D 4 ey 

_ Kkt 1) 2kt 1) 
2 

_ (k1) (k+2) 
2 

Step 4: But this is equivalent to the (k + 1)" assertion, which 
is true if the k™ assertion is true. We have thus shown that the 
assertion following each true assertion is also true, and thus
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by mathematical induction the formula given is true for all n. 

e S R 

Exercise 1.4.1 

Prove by induction that for all n: 
a 1+4+7+..+(3n-2) = -n(3n-1) 1 

2 

b 1+549+...+@n-3) = n2n-1) 

c 2+4+6+...+2n = n(n+1) 

d 5410+ 15+...+5n gn(n+1) 

e 6+12+18+...+6n = 3n(n+1) 

f 1+2+4+8+... 42" =2n-1 

1—r" 
k=7 
  8 THr+r+..+rt= 

h 1P2+3+5+..+02n-1)7 = %n(é}nz—l) 

i 12224 32 (1) T2 %(-1)"- In(n+1) 

In this section we consider some propositions involving 

divisibility and inequalities. 

Let P(n) be the proposition that 9" 1|8 (ie. 97—1 is 

divisible by 8) forall n > 1. 

Step 1: The proposition is true when 1 = 1 since 9' - 1 =8 

which is divisible by 8 

Step 2: Assume P(n) holds true for n = k, i.e. assume that 

9k—1 = 8m where m is an integer. 

Step 3: Prove P(n) is true for n =k + 1. i.e. prove that 
9¢+1-1 is divisible by 8. 

Now 9! -1 =9(9") -1 

9(8m +1) -1 (as 9*=8m + 1 (from Step 2)) 

" 72m+8 

= 8(9m + 1) which is divisible by 8 

‘Therefore, P(n) is true for n =k + 1. 

Step 4: Thatis, if the proposition holds for n = k, it also holds 
for n=k+ 1. Asitis true for n = 1 it is then true for n =2, and 
50 on, and thus the proposition is true forall n > 1. 

  

Let P(n) be the proposition that 2" > n foralln > 1. 

Step 1: P(n) is true when n = 1 since 

LHS=2'=2>1=RHS 

Step 2: Assume that P(n) holds for n = k; i.e. that 2*> k 

Step 3: Prove that P(n) is true for n =k + 1 

ie. showthat 2¢'>k+1. 

From Step 2 above, 2* >k 

2x2* > 2k (multiplying both sides by 2) 

But, 2x2t =251 26152k 

Now, k> 1s0 2k=k+k=k+1 and hence 2**' > k+1 

i.e. P(n)holds for n = k + 1 if it holds for n = k. 

Step 4: Thus as P(n) holds for n = 1, it holds for n =1+ 1 

and so on for all values of n > 1. 

e LT oL PR e S e TR E) 

Exercise 1.4.2 

By induction, prove that: 

a 9+2 — 4" js divisible by 5 forall n > 1 

b n* - nis divisible by 3 forall n>1 

c n®+ 2n is a multiple of 3 forall n > 1 

d 7"+ 2is divisible by 3 forall n > 1 

e 97+1 —8n - 9 is divisible by 64 for all >    
f 2"21+nforalln>1 

Extra questions



CHAPTER 1 

FURTHER EXAMPLES 

We now consider more difficult propositions. 

Let P(n) be the proposition that #* + 51 is divisible by 6 for 

alln > 1. 

Step 1: Testforn=1 

17+ 5 x 1 =6 which is divisible by 6 and so the proposition 

is true for n =1 

Step 2: Let P(n) be true for n =k, 

ie. WTS" = me k3+5k = 6m, misan integer. 

Step 3: Testforn=k+1 

(k+1)*+5(k+1) =k +3k+3k+1+5k+5 

=(k+5k) + 3k + 3k + 6 

= 6m + 3k* + 3k + 6 (from Step 2) 

=6m+6+3k(k+1) 

Now k(k + 1) is an even number and thus it has a factor of 2 

(the product of two consecutive integers is even). Thus the 

product 3k(k + 1) can be written as 3x 2 x ¢ where g is the 

quotient of k(k + 1) and 2. 

. LHS=6m+6 + 69 

=6(m + 1 + q) which is divisible by 6. 

Step 4: Thus, if the proposition is true for n = k then it is 
true for n =k + 1 as proved. As it is true for n = 1, then it must 
be true for n=1+1 (n=2). Asit s true for n = 2 then it must 

hold for n=2+ 1 (n = 3) and so on for all positive integers . 

That is, by the principle of mathematical induction P(n), is 

true. 
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Let P(n) be the proposition that 
n 

Z (4r—6) = 2n(n—2) forallne Z*. 

r=1 

However, when dealing with sigma notation it can be helpful 
to write the first few terms of the sequence: 

n 

Y (4r-6) = —2+2+6+10+ .+ (4n-6) = 2n(n~2) 

r=1 

Step 1: P(1) s true for n = 1 since 

LHS=4x1-6=2x(1-2) = -2 =RHS. 

Step 2: Assume that P(n) is true for n =k, 

ie. 2 (4r—6) = 2k(k-2). 

r=1 

Step 3: Test P(n) for n=k+ 1: 

Adding the (k + 1)" term, [4(k + 1) - 6] to both sides gives 

k 

S (4r-6) + [4(k+1) - 6] =2Kk(k~2) + [4(k +1) 6] 
=1 (from Step 2) 

= 2k* -4k + 4k-2 

=2k-1) 

=2(k+1)(k-1) 

20k + DIk +1)-2] 

‘which is the (k + 1)™ assertion. 

That is, P(n) is true for n =k + 1. 

Step 4: Thus, if the proposition is true for n = k, then it is 
true for n = k + 1. As it is true for n = 1, then it must be true 
forn=1+1(n=2).Asitis true for n = 2 then it must hold 

forn=2+1(n=3)and so on for all positive integers n.



  

That is, by the principle of mathematical induction, P(n) is 
true. 

T T S o i SR e el 

Exercise 1.4.3 

Prove the following using the principle of mathematical 
induction forall ne 2" . 

n 
1 __n 

a Z(Zr—])(Zr*—l) n+1 
r=1 

" 

b 2 (2r=1) = n¥(2n*-1) 

r=1 

n 
1 ¥ o e L c Yy 5= 5) 

r=1 

d 2422423+ ... +27 = 2(2"-1) 

e 1+3+9+...+3"*‘=%(3"—1) 

f l+l+l+“,+ 
22 2 

  

=2_2l-n 
-1 

g 1A1+2A3+3.5+...+n(2n—l)=én(n+l)(4n—l) 

h 1.1+32+54+ ...+ (2n—1)2""1 = 3+27(2n-3) 

Extra questions 

Mathematics can be considered to be the study of patterns. 
A useful ability in maths can be forming a rule to describe a 
pattern. Of course any rule that we develop must be true in 
all relevant cases and mathematical induction provides one 
method of proof. 

Here are two final examples: 

a 
1’ 
  Consider f(n) = 2”—" then: fin+1) = 

  Now u, = fin+1)~f(n) ,ie. L = 4 _4, 
27t on   

MATHEMATICAL IN 

Equating and solving for a gives a = -2 

-2 
ontl 
  1 1)= =1, a2y Sin+1) S ) = 1 

Therefore, 

1.1 1 1 1 Lily el o« rayogn = —Ler= 1oL Jritet oy T At DA =~ o 

This result can be proved by induction. 
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Let d, represent the number of diagonals in an n-sided 
polygon. The value for d, is shown in the table for values of n 
up to n = 6 (construct the next few diagrams in the pattern to 
verify and extend this table). 

  

n 3 4 5 o 
  

d, 0 2 3 ©             
  

Plotting the points related d”x 
to the variables n and d, 
(above) suggests that the ¢ 

relationship between them 
could be quadratic, and so 4 
we might assume that : 

, = an®+bn+c 

Substituting the first 3 values for n gives: 

n=3 =0=9%+3b+c 

n=4 =2=16a+4b+c 

n=5 =5=25a+5b+c 

Solving these three equations for a, b and ¢ gives



wd po s =12 3, _n@r-3) a—z,bf z,andcfl)andlhusd” Jni=3n - 

6(6-3 
Whenn=6, d = % = 9, which corresponds to the 

tabulated value for n = 6 above. 

So far we have formed a conjecture that the number of 

diagonals in an n-sided convex polygon is given by 

= 201=3) " This formula remains a conjecture until we 

prove that it is true for values of 11> 3. 

Proof: 

Let P(n) be the proposition that the number of diagonals 

that can be drawn in an n-sided convex polygon is given by 

d, = w forn>3. 

Step 1: P(n) istrue for n=3as dy = %‘3) =0 which is 

the number of diagonals in a 3-sided polygon. 

Step 2: Assume that P(n) is true for a k-sided polygon i.e. 
that = X320, e consider the effect that adding an 

extra side will have on the result. 

Step 3: Looking at the tabulated values for n and d, you 

should see that adding an extra side to an n-sided polygon 

produces an extra (n - 1) diagonals, and so we can say that 

d, ios =d, + the extra diagonals added by the extra side 

=d+(k-1) 

_ k(k=3) 
7 g +(k-1) 

_ k(k=3)+2(k-1) 
2 

_ G+ D(k-2) 
2 

- (k+D[(k+1)-3] 
2 

Step 4: Which is the (k + 1)" assertion. 

Thus, if the proposition is true for n = k, then it is true for n = 

k+ 1. As it is true for n = 3, then it must be true forn =3 + 1 

(n=4). Asitis true for n =4 then it must hold forn=4+1(n 

=5) and so on for all integers n > 3. 

By the principle of mathematical induction, P(n) is true. 
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Exercise 1.4.4 

Find the sum to 7 terms of the sequences below and then 
prove your results true. 

a 2+5+10+17 + ...+ (n*+ 1) 

b 1+8+427+64+...+n 

& Iplapdoa oL 
5 25 125 i 

d P+3+5+..+02n-1) 

e 1.3+24+3.5+..+n(n+2) 

¢ L 1 
1.3 (2n-1)(2n+1) 

  

For questions 2 to 6, find the required general result and then 

prove your answer using mathematical induction. 

2 1,3,6, 10, 15, ... are called triangular numbers. 

Denoting the nth triangular number as ¢ , find a formula for 

3. Find the size of each angle in a regular n-sided polygon. 

4. Find the maximum number of pieces that can be 
formed making n straight cuts across a circular pizza 
(pieces don’t have to be of equal size). 

5. Find the number of squares of all sizes on an n x n 

chess board. 

6. Prove that a three digit number is divisible by 3 if the 
sum of its digits is divisible by 3. 

Extra questions 

Answers  



  

Introduction 

omplex numbers are often 

first encountered when 
solving a quadratic equation 

of the type for which there 
are no real solutions, e.g. 

x2+1=0o0rx2+2x+5=10 
(because for both equations the 
discriminant, A = b2 —4ac 
, is negative). However, 

the beginning' of complex 

numbers is to be found in the - 
work of Girolamo Cardano (1501-1576), who was resolving 

a problem which involved the solution to a reduced cubic 
equation of the form x*+ax = b,a>0,b>0. Although 
others later improved on the notation and the mechanics 

of complex algebra, it was the work found in his book, Ars 
magna, that led to the common usage of complex numbers 

found today. 

  

Notation and i = -1 

The set of complex numbers is denoted by: 

C={z:z=x+iy, wherex, yeR,i* =1} 

The complex number, z, is ‘made up’ of two parts; ‘x” and 

“iy’. The ‘x-terny is called the real part and the ‘y-term’ is the 
imaginary part i.e. the part attached to the ‘7, where i>= —1. 

It is important to note the following: 

1. The complex number z=x+7y is a single number 
(even though there are ‘two parts, it is still a single 

value). 

1 See An Imaginary Tale, The Story of , by Paul J. Nahim.   

2. The real part of z, denoted by Re(z) is x. 

The imaginary part of z, denoted by Im(z) is y. 

‘This means that the complex number z can be written as: 

z=Re(z)+Im(z)i 

Notice that the imaginary part is not ‘iy” but simply ‘y 

  

a We have that Re(z) = Re(2+3i)=2 and 

Im(z) = Im(2+3i) = 3. 

Therefore, the real part of z is 2 and the imaginary part of z 

is 3. 

b Similarly, Re(w) = Re(3-9i) = 3 and 
Im(w) = Im(3-9i) = 9. 

"That is, for w, the real part is 3 and the imaginary part is -9. 

It is important to locate, 

and become familiar 
with, the Complex 

Number part of your 
calculator (TT). 

l6: Convertto Polar X 
[7: Convertto Rectangutar 

 



  

If using Casio, press the Option key (OPTN) followed by F3 

- complex, 

     

‘We first need to determine what the real and imaginary parts 

ofz = 2xi+y2—1 are. 

We have that /m(z) = Im[(2x)i+ (v~ 1)] = 2x. 

sdm(z) = 82x = 8ex = 4, 

Similarly, Re(z) = Re[(2x)i+ (v~ 1)] = y2~1 

“Re(z) =0&)2-1=0&y = +1 

(NS S W e v TS ey 0 RPN, 

The algebra of complex 

numbers 

Working with ‘i’ 

Since we have that i = J~1, then i = ~1, meaning that 
B=2xi=-1xi=—i. 

  

Similarly, i = i2x2 = -1 x-1 = 1 ,etc. 

  

General results for expressions such as i” can be determined. 
‘We leave this to the set of exercises at the end of this section. 

Operations 

For any two complex numbers z; = a+ib and z, = ¢ +id, 
the following hold true: 

Equality: 

Two complex numbers are equal if and only if their real parts 
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are equal and their imaginary parts are equal. 

Addition: 

The sum of two (or more) complex numbers is made up of the 

sum of their real parts plus the sum of their imaginary parts 
(multiplied by 7). 

Subtraction: 

The difference of two (or more) complex numbers is made up 

of the difference of their real parts plus the difference of their 
imaginary parts (multiplied by ‘7'). 

Multiplication: 

‘When multiplying two (or more) complex numbers, we 

complete the operation as we would with normal algebra. 

However, we use the fact that i = 1 when simplifying the 
result. 

The conjugate of z = x+iy, denoted by z or z* is the 
complex number z* = x—iy. Note that: 

That is, when a complex number is multiplied with its 

conjugate, the result is a real number. z=x + iy and 2’ =x - iy 

are known as conjugate pairs. 

Conjugate: 

Division: 

When dividing two complex numbers, we multiply 
the numerator and denominator by the conjugate of 

the denominator (this has the effect of ‘realizing’ the 

denominator).



  

That is, 

  

Note: It is important to realise that these results are not 

meant to be memorised. Rather, you should work through 
the multiplication or division in question and then simplify 

the result. 

  

Recall: Two complex numbers are equal if and only if their 
corresponding real parts and imaginary parts are equal. 

So,z=wex+(y-2)i=4+iex =4andy-2 =1, 

‘Thatis, z = w ifand only if x=4and y = 3. 

  

As we are equating two complex numbers, we need to 

determine the simultaneous solution brought about by 
equating their real parts and imaginary parts: 

From (3 -2i)(x+iy) = 12-5i we have 

3x+3yi—2xi—2yi® = 12-5i 

& (3x+2y)+(By-2x)i = 12-5i 

©3x+2y =12 -(1)and 3y-2x = -5 - (2) 

Solving simultaneously, we have: 

2x(1): 6x+4y 24 - (3) 

3x(2): 9y—6x = —15 - (4) 

Adding, (3) + (4), we have: 13y = 9 

Therefore, y = % . Then, substituting into (1) we have: 

9 138 46 LonE = =20y = 3x 2><13 12 3x B oY T3 

So, we have the solution pair, x = 4]—§, o= 19_3 

  

® z+w=(3+7)+(1-27) 

+1)+(7—27) 

4-7 

b 2z-3w=2(3+7)-3(1-2/) 

=(6-3)+(2/+6/) 

=3+8/ 

  

c zw=(3+7)(1-27) 

=3-6/+7-2i" 

=3-5/+2 
=5-5/ 

d w?=(1-27)(1-27) 

2/ -2/ +4i" 

1-4i-4 
=-3-47 

  

I 

  

Yousshould beable to perform such calculations both manually 
and using your calculator. Parts b & ¢ of the previous example 
are solved as follows (note that you must use the complex 
number version of '#,, not the variable T). 

  

  

        

  

‘The same calculations can be performed using Casio models: 
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a z=2+6i=z"=2+6i=2-6i. 

b w=SBi-l=w'=Bi-1=-3i-1. 

Ldi _1-47 1751 
145/ 145/ 1-5 

_1-5/-47+20/* 
T 1-5/+5/-25 
_1-9/-20 
T 1425 
_-19-9/ 
  

     
You may need to use the F—D key (above 8) to get the answer 
as a fraction. 
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zHz% = (xHip) +(x—iy) = 2x = 2Re(2). 

    Note then, that 

z—z* = (x+iy)—(x—iy) = 2yi = 2Im(z)i 

  

Note then, that 

  

zw = (cos@+ isin®)(sina + icosor) 
= cosBsina + cosBeosai + sin@sinoui + sin@cosoi? 

cosBsino.+ cosBcosai + sin@sinou — sinBcoso 

= (cosOsino.— sin@coso) + (cosBcoso. + sinBsinor)i 

sin(o.—0) + cos(o—0)i 

With p = sin(e.- ) and ¢ = cos(o.—8) 

we have p2 +¢2 = sin?(0.—0) + cos?(0.—0) = 1. 

As p?+¢? will always have a fixed value of 1, its 
maximum value is also 1.



Exercise 1.5.1 8. 

Find: a Re(z) b Im(z) cz* for each of the following. 

i oz=2+2 ii z=-3+.2i 

iii z=-5i+6 iv Z=7§i 

v Z::}L{ vi 2z=1-3i-z 
2 

Ifz = 4—iand w = 3 +2i,find in simplest form (i.e. 9. 

expressed as u+ iv ), the following. 

a z+w b 

z*w f iw d 2z-3w e 

Ifz=2+i and w = —3+2i, find in simplest form 
(i.e. expressed as u + iv ), the following. 

  

  

  

  

  

a zH+w b z-w ¢ iz? 

d e 2w f iw ila 

For the complex numbers z = 1 -i and w = 2i-3, 
express each of the following in the form u+ iv. b 

! b ¥ e H 
2 12. 
22 e 2 z 

w+3 w* 

Simplify the following. 

(2+4i)(3-2i) b (1'—1')3 

! 13: 
(1+ 20 & T+2i 

1+2i £ (-ii 

i (=i+2) 

Given that z = 3+ +/2i and w = , find: 

a  Re(w) b Im(zw) ¢ Re(i) 
W 

14. 

Find the real numbers x and y such that: 

a  2x+3i=8-6yi 

b x+iy = (2+3i)? 

c (xtiy)(=i) =5 

  

a Simplify " for: 

i n=0,1,2,3,4,5 

ii n=-1,-2,-3,-4,-5 

Evaluate : 

il i i i15 i i 

90 i i iv 

Find the real numbers x and y, for which 
(x+yi)(5-2i) = —18+15i. 

Show that for any complex numbers z = x+iy and 
w=a+bi: 

a(z+w)* =zx+w* bz-w)* =z*—w* 

c (zw)* = z¥w* d ()% = (z*)? 

f(z*)* =z 

Prove that zWw —Zw is purely imaginary or zero for all 
complex numbers z and w. 

Prove that 2w + 2w is real for all complex numbers * 
and w. 

Given that w = ,wherez = x+iy, z=1 
z+1 

find the condition(s) under which: 

a wisreal b w is purely imaginary. 

aFind the real values of x and y, such that 
(x+iy)2 = 8-6i. 

b Hence, determine ./8 — 6/, expressing your answer 

in the form u + iv, where u and v are both real numbers 

and u > 0.Find ./3 - 4i, expressing your answer in the 
form u+ iv, where u and v are both real numbers and 
u>0. 

Simplify the following. 

a (+i3=(1-03 

b (A +iP3+(1-i)? 

.o 
(-0 
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15. 

20. 

21 

22. 
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Find the real values x and y for which: 

a (x—y)+4i = 9+yi 

b (Qx+3y)—x3i = 12-64i. 

Find the complex number z given that: 

5z+2i = 5+2iz, 

giving your answer in the form a + ib, where a and b 
are real. 

Find the complex number z which satisfies the 
equation z(1+42i) = 1-./2i. 

The complex number z satisfies the equation 

22— =2z-1.1f z = u+iv find all real values of u 
and v. 

Bty 
Ify = lTi’find' 

a Re(z2)+ Im(22) 

b Re(z+£j+lm(z+£) 

a  Show that: 

1ti_, 
: 1-i 

  
2 

L+ v s 
b Show that (1—) =1 if k is a positive 

integer. B 

Find the complex number(s) z = a + bi, 

2 
satisfying the equation ]] rz 

Express the following in the form p +¢i, where p and 

q are real numbers. 

a (cosB + isinB)(coso. +isino) 

b (cos6 +isin®)(coso —isino) 

  

c (7 cos® +ir, sin@)(rycos oL+ irysinot) 

d (x—cos0 —isin®)(x — cosO + isinB) 

e (x+ sino.+ icoso)(x + sinoL— icost) 

23.  For the complex number defined as 

z = cos(0) +isin(0), show that: 

52 cos(20) +isin(20) 

b 28 cos(30) +isin(30) 

Assuming now that z¥ = cos(k8) + isin(k8),, show that: 

c CHi(S-1) = 

  

whereC = 1+ cos(8) + cos(20) + ... + cos((n—1)8) 

and 

S = 1+sin(0) + sin(20) + ... + sin((n— 1)), 

where0<0<g_ 

24.  aGiven that (x+iy)?> = 8+6i, find the values of x 
and y. Hence, find /8 + 6i . 

b If (2+3i)(3-4i) = p+gqi, find the value of 

P+t 

c If (x+iy)?> = a+ib, find an expression for 

a?+ b2 interms of x and y. 

Extra questions 

Answers  



  

The Argand Diagram 

nlike real numbers (which can 

be described geometrically by 

the position they occupy on a one 

dimensional number line), complex 

numbers require the real and 
imaginary parts to be described. 

The geometrical representation 

best suited for this purpose 

would be two- dimensional. Any 

complex number z = x+iy may 
be represented on an Argand 

Diagram, by using either 

  

1 the point P(x,y), or 

) 
. — 

2. the position vector OP 

That is, we make use of a plane that is similar to the standard 

Cartesian plane to represent the complex number z = x +iy. 
This means that the x-axis represents the Re(z) value and the 

y-axis represents the /m(z) value. 

_ 

The complex plane has led to the Mandelbrot Set (heading 

picture by Binette228) and models of tree branching and other 

elaborate natural forms. 
    

Example 1.6.1 

Represent each of the following complex numbers on an 
Argand diagram. 

a7 =l t30 bz = =2 iz =21 

a With z = 1+3i, we have x = Re(z) = 1 and 
v = Im(z) = 3. Therefore, we may represent the complex 

number z = 1+3i by the point P(1,3) on the Argand 

diagram: 

  

Similarly for parts b and ¢ we have: 

b ey ¢ Im(z) 

I | j 
  

  Re(z) 

    
  

  P(42, 1) 
                    

  

  
  Re(z)     

Geometrical properties of complex 

numbers 

The modulus of z 

The modulus of a complex 
number z = x+iy is a 

measure of the -length 

of z=x+iy and is 

denoted by |z|. That is, 

mod(z) = |z|.  
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The modulus of z is also called the magnitude of z. We can 

determine the length by using Pythagoras’s theorem: 

(opP)? = 

  

The modulus of z is also written as r, i.e.r = |2|. 

The Argument of z 

The argument of a complex 

number z = x +iy is a measure 

of the angle which z = x+iy 
makes with the positive Re(z) 

-axis and is denoted by arg(z) 
and sometimes by ph(z) , which 

stands for the phaze of z. If 
9 is this angle, we then write, 
0 = arg(z). 

<0<, e 0= () 
Notice the use of capital ‘A’ rather than lower case ‘@’ Using 
0 = Arg(z), implies that we are referring to the Principal 
argument value, that is, we have restricted the range in which 

the angle 6 lies. 

  

a  z=d+3in = J@2+3)2 =B =5 

Notice that we only square the real and imaginary parts of the 
complex number. That is, we do not use 3i because this would 
give J(4)2+(30)2 = J16-9 = /1 

b In the same way we have: 

=A@ = A5 

(R T R TR SO ATy 
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When finding the principal argument of a complex number, 
an Argand diagram can be used as an aid. This will always 
enable us to work with right-angled triangles. Then we 
can make use of the diagram to find the restrictions on the 
required angle,i.e. ~T<O<m, then ® = Arg(z) . 

a We first represent z = I +i on an Argand diagram: 

From the triangle OPM, we have: 

_PM 1 tan® oM ‘I 

=0 = Tan (1) 

=z o =0 7 (or 45°) 

  

‘Therefore, the principal argument of z, is Arg(z) = % 

b Again, we start by using an Argand diagram: 

Im(z) 
From the triangle OPM, we 

have: 

PM _2 i < EM = 2 
" oM T 1 
s = Tan'(2) 
=0 = 63°26' 

  

Therefore, 8 = 180—63°26" = 116°34". 

So that (the principal argument) Arg(z) = 116°34’. 

c Notice that we only make use of & to help us determine 

0 [ie. at6 = m (or180°)] 

Im(z) 
From the triangle OPM, we have: 

M _ 3 
= iom = 1 

no= Tan” () 
S0 = 60° 

Therefore, & = 180 - 60° = 120°. 

  

So that (the principal argument) 4rg(z) = ~120°, 

Notice that because we are ‘moving’ in a clockwise direction, 
the angle is negative. 

Notice that in the last example, although Arg(z) = -120°, 

we could have written arg(z) = 180°+60° = 240° (using 

‘small’ ‘a’).



  

Using a calculator 

On TI models, remember to use Menu 2, 9 to access the 

complex number capabilities. 

     
       

   

1: Convert to Decimal 

x=3: Algebra  |2: Approximate to Fraction 

fe94: Caleulus  [3: Factor 
    

  

  

   

  

> b A: | ea gmmon Multiple 

1: Complex Conjugate Common Divisor 
2: Real Part er    
3: Imaginary Part Fools      

    

    

Convert to Polar 

Convert to Rectangular 

  angle(2+t') tan“(l) ‘ ‘ 

2 “ 
X 5 angle(2+7) 0.463648 

Use run mode if using Casio. 

Press the Option key (OPTN) followed by F3 - complex, 

  

{5 

0.463647609 
    Arg (2+i) 

      

a First, we need to determine the complex number z +4 

z+4 = (1+2i)+4 = 5+2i. 

Then we have, |5+2i| = J/25+4 = /29 

b First, we need to determine the complex number 

z+w: 

z+w=(1+27)+(x—1) 

=(r+1)+7 

=|(x+1)+4 

=J(x+1)+1 

=t +2x+2 

Adding complex numbers - geometric 
representation 

The addition of two complex numbers z; = x;+iy, 

and z, = x, +iy, can be considered in the same way as 

the addition of two vectors. That is, if z; = x,+iy; and 
z, = x, + iy, are represented by directed line segments from 

the origin 0+ 0i their sum, (x; +x,) +(v; +,)i canalso be 

represented by a directed line segment from the origin 0+ 0i. 

  

xpt+xy 

eg.ifz, = 6+2i andz, = —4+4i thenz, +z, = 2+6i g1t z) 2 172 

Subtracting complex numbers - geometric 
representation 

Subtracting two complex numbers zj =x +iy; and 
z, = x,+iy, can be considered in the same way as 

subtracting two vectors. That is, if zj =x;+iy, and 

2, = x, + iy, are represented by directed line segments from 

the origin 0+ 0i. Subtracting z, from z;, ie. z;-2z, we 

obtain (x; —x,)+ (¥, —¥,)i which can also be represented 

by a directed line segment from the origin 0+ 0i. 
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X —Xy 

eg.ifz = 2+6iandz, = —4+4i thenz —z, = 6+2i 

The similarities between complex numbers and vectors in 

two dimensions (see Chapter 4) make much of the theory 

interchangeable. Often, complex numbers are represented by 

the same notation as used in vector theory. For example, if 
the point P on the Argand diagram represents the complex 
number z = 2+3i then the vector OP = [2,3] would 
represent the same point. However, at this stage we will 
concentrate on features that deal directly with the complex 
numbers field. 

Exercise 1.6.1 

1. Show the following complex numbers on an Argand 
diagram: 

a 2+ b —6i 

c 4-3i d 2(1-10) 

e 3(1-i f (1+20)? 

2 a For the complex number z = 1 +i, represent the 

following on an Argand diagram: 

i zi ii zi2 i zi 

iv zi 

b What is the geometrical effect of multiplying a 
complex number by i? 

i z* i z+z* i z-z* 

Describe the geometrical significance of each of the 
operations in part b. 

3. If zy = 1+2i and z, = 1+i, show each of the 
following on an Argand diagram: 

1 
a 2 b 5 c 22, 

  

N + t O
 d 22—z, e 2z, f 
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Find the modulus and argument of: 

a 1+3i b 1-J3i ¢ 1+.2i 

Consider the two complex numbers z = a+bi and 

w=—a+bi. 

Find [2], wl, |zw] . 

Find:  idrg(z+w) i drg(z—w). 

Ifz = (x=3)+i(x+3),find:a lz| b{x:ll=6} 

Ifz = 2+iand w = — 1 -, verify the following. 

a |22 = 22+ b lzwl = |zl |w| 

c w3l = w3 d |z +wl < || + ] 

e Arg(zw) = Arg(z) + Arg(w) 

‘What is the geometrical significance of part d? 

Ifw:j—j and |z]=1, find Re(w). 

Given that [w| = 5, find 

a |-3w| b ] c 12iw] . 

If Arg(z) = 0, show that z is real and positive. 

A complex number w is such that w is purely 

imaginary. 

Show that Arg(w) = i’—;, 

  a Ifarg(z) = g and z = x+ iy, show that J3y = x. 

b Findz if z—1] = 1 and arg(z—-i) = 0. 

aIf the complex number z satisfies the equations: 

ra(e 1) = & and arg(e 1) = z 

show that z = %(l +.J30). 

b If w and z are two complex numbers such that 

lz=wl = lz+wl, 

show that |arg(z) — arg(w)| = % or 37"



  

Extra questions 

Polar Form 

So far we have been dealing with complex numbers of the 
form z = x+ iy, where x and y are real numbers. Such a 

representation of a complex number is known as a rectangular 
representation. 

However, the position 

of a complex number on 

an Argand diagram has 
also been described by its 
magnitude (i.e. its modulus) 

and the angle which it makes 
with the positive Re(z) 

-axis. When we represent a 
complex number by making 
use of its modulus and 
argument, we say that the complex number is in polar form. 

To convert from the rectangular form to the polar form, 

we make the following observations: From triangle OBP, we 
have: 

i =¥ = 1. sin(0) = OP - =y = rsin(0) 

OB _x _ 
2 cos(0) = a} :x rcos(0) 

Therefore, we can rewrite the complex number z as follows: 

N " x+iy = rcos(0)+irsin(@) 

r(cos® +isin@) - we say that z is in polar form. 

Often, we abbreviate the expression z = r(cos +isin0) 

to: 

z= r(cosO+isinq) = rcis(0) e ey 
roc is 8 

    

a When converting from rectangular to polar form, the angle 

0 refers to the 

Principal argument. 

It is advisable to draw 
a  diagram  when 

converting from 

rectangular to polar form. 

Step 1 tanf= J_=>a=% Step2 r=y17+(\3)’ 

Therefore, z = 3+i = 2(cosg+isin§) = Zci:(g) 

  

  

b 

Ik rd 
tanf=-=6=— Step 1 1 1 

Step2 r=A17+(1)’ = 

    

Letz = ficus( ) Therefore, we have: 

z= fi(cos(3f)+xsm( D (‘expanding’ cis-term) 

I Hpr) 
—1+i 

Exercise 1.6.2 

1. Express each of the following complex numbers in 

polar form. 

a 1+i b =147 ¢ =1=# 

2 Express each of the following complex numbers in 
polar form. 

a  2+2i b Btioc 4-4i



RV 

d 3+4i e -2+i f -2-3i 

5 Theory of Knowledge 
g -3+ h 1 43, 3-i 

2 2 . 
Here are six vultures... 

3 Express each of the following complex numbers in 

Cartesian form. 

a Zcix(’z—[j b 3cis(2] 

c ficiS({—:) d 5{:1‘5(371[) 

e -sm(-g) f ficis(—n) 

4. Simplify the following. 

2+ 2z 

[1- 2l I 
c Arg(z) + Arg(z*) 

  a 

  

5. Ifz = ficis(g) and w = 1+./3i, ... and six penguins (look carefully, there are three babies - 
they are not fluffy slippers). 

find the following, giving your answer in the form 

utiv. 

a w* b Z¥ © wz 

E 6. alfz=x+iy,showthatz+ = = 2Re(z). z 

b If z = x+ iy, show that: 

i k=H ii 2= | 

7. Ifz=1+iandw = —1+3i,find: 

a |l b [wl c [zwl 

d Arg(z) e Arg(w) f Arg(zw) 

  

The animals are 'real' but six is an imaginary concept. Discuss! 

Answers 
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de Moivre’'s Theorem 

We begin with an important result: 

‘When complex numbers are expressed in polar form, 

their product can be found by: 

L Multiplying their moduli. 

2. Adding their arguments. 

Algebraically, this is: If z; = r cis(0) and z; = rycis(9), 
then z, Xz, = ryrycis(8+0). 

Graphically, this becomes: 

Im(z)    
The powers of a complex number are a special case of this 

property. 

Next, if z; = z, = z = rcis(0) , we then have that: 

22 = zxz = rcis(0) x reis(0) = rlcis(8+0). 

Thatis, z2 = r2¢is(20) . 

and: 2 = zx22 = reis(0) x r2cis(20) = ricis(0+20). 

Thatis, 23 = rcis(30). 

In general then, we have that z” = r"cis(n6). 

de Moivre’s Theorem states: 

Proof: (By mathematical induction) 

Let P(n) be the proposition that (rcis(6))" = rcis(n@). 

For n = 1, we have that 

LHS = (rcis(8)! = rcis(8) = rlcis(1x0) = RH.S 

‘Therefore, P(n) is true for n=1. 

P(n) Assume now that is true for n =k, 

that is, (rcis(0)F = rkcis(k8). 

‘Then, for n = k + 1, we have 

(reis(0)F 1 = (reis(8))K(reis(8)) 

rkeis(k0)(rcis(0)) 

rk+ 1 cis(kB)cis(8) 

rktleis(kO+0) 

rk+ leis((k+1)8) 
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Therefore, we have that P(k + 1) istrue whenever P(k) istrue. 

‘Therefore, as P(1) is true, by the Principle of Mathematical 
Induction, P(n) is true forn=1,2,3,... 

Note that the case 7 = 0 is the trivial case. 

Notice that de Moivre’s Theorem holds for all integral values 
of n, both positive and negative, i.e. 7€ ZU {0} as well as 
rational values of n, i.e. ne Q. 

Graphical properties of de Moivre’s Theorem 

For the complex number z = rcis(8) , we have 

L = (reis(@)! = %m(-e) 

ie |z = |-t = % and arg(z"!) = -0, 

9 22 = (reis(8))? = r2cis(20) 

o2cis(20) Im(z) 

        rcas(e) 

  

Let? ™~ ‘fi+i. 

This means: 

r=|B+d = LB +12 = 2ando = ra,r’(%) -5 

‘Therefore, we have that z = /3+i = Zci:(:—,:). 

Using de Moivre’s Theorem, we have: 

(B+i) = Zscis(s?n) = 320i:(5-—61-[) 

o)) 
68   

s(-4+4) 
=163+ 16i 

     Letz = -1+i, 

This means: 

r=-ldi = 22 = 2 
and 

(1) - _m 0 = Tan (l) 4..Arg(z) T 

‘Therefore, we have that z = — 1 +i = ficis(vsf), 

Using de Moivre’s Theorem, we have 

(1+iy4 = (Ji)“aix(Ax%") =   1 cis(-3m) 
Ayt 

= Jeos(3my+isin(-3m) = F-1e0n =L 

  

‘We first convert both numerator and denominator into polar 

form. 

1+i = J2cis(T) [standard result] 1 

and 1-i = ficis(—:).'.(l —i= (fi)lci:(v:%") 

Therefore, 

T et O ()] e



  

1 1. = im0 FOOST+ Sising, 

a We first convert each term into its polar form: 

1+f=ficzs[£] 
4 

el ] (1+7) («/i) e\ 7 

(57 
—4fias(-4—) 

i 1-7=2cis| == 7= %) 

%) (1= =(V2) e : 

=4fic¢(—5—”) 
4 

It follows that: 

1 1 1 1 
=4J7| |~ 4=t ||~ A wm - w) 
3] 
=-8 

b Using the previous results we have, 

A+i( - = 4ficis(%"] x 4ficis(—%£) 

= 32615(5—" — 5—1‘:) 
4 4 

= 32cis(0) 

=32 

Notice that whenever we add or multiply the complex 

numbers rcis(6) and rcis(-0), a purely real complex 
number will always result. This can seen as follows: 

COMPLEX 

I Adding 

reis(0) + reis(—0) = rlcis(0) + cis(-0)] 

r[(cos@ + isin®) + (cos(-0) + isin(-0))] 

r[(cos@ +isin®) + (cos® —isin®)] 

r[2cosB] 

2rcos® 

I 
[} 

2. Multiplying 

reis(0) x reis(—0) = r2[cis(0) X cis(-0)] 

= r2[cis(0-0)] 

= r2cis(0) 

=2 

Exercise 1.7.1 

1. Express each of the following in the form x +iy. 

a a+ns b (—1+i)* 

¢ (@+2i)? d (~B+iy 

e (B f (3-4i)} 

2 Express each of the following in the form x +iy. 

a  (1+)S b 1+ 

¢ @+2)? d By 

e B-07° £ (3-4i)3 

3. Express each of the following in the form x+iy. 

a (ZL'is(gD: b (3cis('5‘))4 

C () o o) 
C ) ) 

4. Find each of the following, expressing your answer in 

the form x+iy. 

a (a+iP@e-2* b (B+i(1-i)? 
o3 

¢ ‘%f{% 4 GBrtae B 
” (B +4it (+it 

(3-4i)? (1-i)? 
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5; a Prove that cis(8+2km) = cis(8), for all integer 

values of k. 

Using part a, evaluate the following. 

i cis(37m) ii cis(-43m) 

is(2. iii Cla( 2 1[) : 

6. Simplify the following. 

a ci:(n)cis(~3—2—n) 

P [T b 2o Z)xsei(2) 

chis(g) 

< (T Fl 
7. a Express cis(gj and cis(g) in the form x+iy. 

Hence, express ris(%) in the form x+iy. 

b Use part a to find the exact value of: 

) L (Tmy T 
i sm(l—ij i cos( 12) 

8. Use De Moivres theorem to prove that: 

iz = reis(8) then ()" = (). 

Extra questions 
  

The nth roots of a Complex 

Number 
Definition The nth roots of the complex number x + iy are 

the solutions of the equation 27 = x +iy. 

de Moivre's Theorem suggests a geometric approach. 

This question amounts to asking for all the solutions to: 

Z'=-1orz’=cism. 
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First locate 1 on the Argand Diagram: 

  

As a consequence of de Moivre's Theorem, any solution to 
this question must have a modulus of 1 (1* = 1). 

Also, any solution must have an argument which, when 
multiplied by 3, will give . 

" - T 
‘The most obvious answer is an argument of 5t 

T 1.3 
Is cis— =—+-—/ acube root of -1? 

3 22 

Check: s 

LB ) (LB, Y15, ) 1,5, 
2 2 2 2 2 2 2 2 

1 3.1 3..V3..3, 
S| =Sl ok S S =] 

2 2 4 4 4 4 

1 3.1 3.3 
S|l ot—i || —+—i—— 

2 2 4 2 4 

1 3. 1 V3. 
St |kt 

[2 2 ]( 2 2 J 

:71+—31—£i+3/2 
4 4 4 

=213 
4 4 

However, there are two other answers: 

. 1 A3, 
cis-m=-1and cis- — =———7 

3 2 2 

The three solutions lie at the vertices of an equilateral triangle: 

Im(z) 

s 1\ 
3+ 

Re(z) 

 



    

    

    

L-lEl4d 

“l+1E147 

Geometrically, we have that the nth roots of a complex 
number are represented in an Argand diagram as the vertices 
of a regular polygon of n sxdes, inscribed in a circle of radius 
#/r, and spaced at intervals of 2% 2% from each other. 

n 

The steps involved in solving equations of the form z# = x+ iy 
(even for the case that y = 0) are: 

Step |. Express x+ iy in polar form, rcis(8) 

Step 2. Realise that reis(0) = reis(8 +2kn), where k is an 

integer, because every time you add another 27, you 
return to the same position. 

Step 3. Use de Moivre's theorem: 

1 1 

21 = reis(0-+2km) sz = [reis(8+2km)]" = 1" m(e *n”"‘) 

Step 4. Use n values of k, usually start at k=0, 1, . . and end 
at k = n-1. This will produce the 1 required solutions 

  

Setting z0 = 64 we have, 

26 = 64+0i = 64[cis(0) +isin(0)] 

= 64cis(0) 

= 64cis(0+ 2km) 

  

oz = al/0cis( BB} k= 0.1,2.3.4.5 

Therefore, we have z = 2as( ) k=0,1,23,4,5. 

So that, 

Numsers (3) 

= 2¢is(0), zm( ) 2cu(23) 2eis(m), 2£!s(43) 2m(53") 

  

8i has a modulus of 8 and an argument of % 

By de Moivre's Theorem, one these cube roots will have an 

argument of one third of the argument of 8i. The moduli of 
all the roots will be the cube root of 8 (= 2). 

The other two roots will be at the vertices of an equilateral 

triangle (triangle because we are looking for a cube root). 

Im(z) 

=3+ J3i 

2 A 
Re(z) 

  =7 
Thatis, z = J3+iorz=—3+iorz=-2i. 

We start by expressing 1+ i,/3 in its polar form: 

1+if3 = 2m( 3) 

Then, set z4 = 2ris(§) = 2cis(§+2kn) = 2cis(1—[—+3in) 

  

  
So that,z = 4 2cis("—+l—6kn),k =0,1,2,3. 

Fork=0,z = 4«/5013(‘2) 

k=1,z =14 zm(%) 20”( 12) 
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i o= %m(m 127:) = f3eis (l]n) 

(105 - s ) - I e N I 

Therefore, the four roots 

of 1+i3 lie on the 
circumference of a circle 

of radius 42 units and 

are evenly separated by 

an angle of 3 

Again notice that the 

roots in this instance do 

not occur in conjugate 

pairs. 

  

  

Exercise 1.7.2 

1. Use the nth root method to solve the following: 

  

2s Find the fourth roots of -4 in the form x+iy and 

hence factorise z* + 4 into linear factors. 

3 Find the square roots of: 

ai b3t4i ¢ -1+.53i. 

Represent these roots on an Argand diagram. 

4. Find the cube roots of: 

al-i b -1+.53i ci 

Represent these roots on an Argand diagram. 

5. Solve the following equations. 

a = 1+i 

b H= 

c 2+i=0 
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Represent these roots on an Argand diagram. 

6 a Find the cube root of unity. 

b Hence, show that if w®=1, then 
IT+w+w?2=0. 

7. Three points, of which 1 +./3 is one point, lie on the 

circumference of a circle of radius 2 units and centre 

at the origin. If these three points form the vertices of 
an equilateral triangle, find the other two points. 

Extra questions 

  

Answers 

 



  

Polynomials 

his section will look at polynomials with real coefficients 
in which the variable may take complex values. To 

emphasise this, the variable is generally labelled z (rather 

than x). 

P(z) = 22> + 3z - 4 is an example of a complex polynomial 
with real coefficients. 

P(z) = 22"+ 3iz - 4is an example of a complex polynomial with 

a complex coefficient (shown in green). Such polynomials are 
not included in this course. 

Arising from such polynomials are equations with complex 

solutions. Our cover shows a plasma discharge. Solving many 

problems in the natural sciences involves complex numbers. 

Even though they may be 'imaginary’ (a term many dispute), 

complex numbers figure in the solution of ‘real' problems. 

Quadratic equations 

We start this section by looking at equations of the form 

ax?+bx +c¢ = 0 where the discriminant, A = b?—4ac<0. 
Such equations will produce complex solutions. 

  

We start the same way we would when dealing with any 

quadratic expression: 

22 +2z+2=(2"+22+1)+1 (complete the square) p! q 

(4) 

= (z+1)2+1 

= (z+1)2— 2 (difference of two squares) 

= (z+1+i)E+1-0) 

To solve z* +2z+2=0, we have: 

(z+1+i)(z+1-i)=0@z=—-l—-iorz=—-1+i. 

Therefore, the two complex solutions are z = -1 - i and 

z=-1+i. Notice that the solutions are a conjugate pair. 

    
Rather than factorizing the equation, we will use the quadratic 

formula. 2 243745 = Qepz = Z3EANIT-4xXIXS 
2x1 

_ -3+ 
2 

  

Therefore, the two complex solutions are 

Lo 3,3 0 z §+ 5 bz 5l 

Again, notice the conjugate pair that make up the solution. 
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Quadratics also come in a ‘hidden form’ For example, the 

equation z0 + 423 —5 = 0 can be considered to be a ‘hidden 
form’ i.e. letting w = z3 we have w2 +4w—5 = 0. And so 
we can then solve the quadratic in w. We could then obtain 

solutions for z. 

  

Let w =22 so that the equation z4+4z2-5=10 is 
transformed into the quadratic w? + 4w —5 = 0. 

Then, we have w2 +4w—5 = 0 (w+5)(w—1) = 0 

@ (22+5)(2-1) = 0 

& =B+ 5DE-DE+1) =0 

Therefore, we have that z = ./5i or z = —/5i orz = | or 
z=-l, 

That is, we have four solutions, two real and two complex 
(again, the complex solutions are conjugate pairs). 

Exercise 1.8.1 

I Factorise the following over the complex number field. 

a x2—6x+10 b 2+4x+13 

¢ x-2xt2 d 2rdz+S 

e 22-3z+4 f 22+ 102+ 30 

g 4w+ 4w+ 17 h 3w2-6w+6 

i —2w2+8w—11 

» Solve the following over the complex number field. 

a 2+4z+8 =0 

b 2-z+3=0 

c 322-3z+1=0 

d 2w+ 5Sw+4 =0 

e w2+ 10w+29 = 0 
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3. Solve the following over the complex number field. 

a 4-322-4 =0 

b wh-8w2-9 = 0 

c 24-522-36 = 0 

4. Factorise the following over the complex number field. 

a 22+25 b 22449 

c 2+4z+5 d 22+6z+11 

e 2h+ 2228 f #-22-6 

Polynomial equations (of order > 3) 

We now look at some of the more general polynomial 

equations that provide a combination of real and imaginary 
roots and factors. The important thing to remember is that 

the laws for real polynomials hold equally well for complex 
polynomials. 

A polynomial, P(z) of degree n in one variable is an 
expression of the form 

n -1 az"+a, 2"+ taizta, 

Ifthe coefficients, a,, a,, |, .... a,, a, arereal, the polynomial 

is a polynomial over the real number field, while if they 
are complex numbers, the polynomial is a polynomial 

over the complex field. We shall, however, concentrate on 
polynomials over the real field. 

‘We state some standard results: 

Remainder Theorem 

If a polynomial P(x) is divided by a linear polynomial 
(x —a), the remainder is P(a). 

Factor Theorem 

If, when a polynomial P(x) is divided by a linear 
polynomial (X — @), the remainder P(a) is zero, then 
(x—a) isafactor of P(x). 

Fundamental Theorem of Algebra 

Every polynomial equation of the form P(z) = 0, 
z € C,of degree n € @ has at least one complex root.



  

This theorem is the basis for the next important result: 

A polynomial P,(z), z€ C, of degree n€Q@", can be 

expressed as the product of n linear factors and hence, 

produce exactly n solutions to the equation P,(z) = 0. 

We have already observed, in previous examples, the 
occurrence of conjugate pairs when solving quadratics with 
real coefficients. We now state another result. 

Conjugate Root Theorem (C.R.T) 

The complex roots of a polynomial equation with real 
coefficients occur in conjugate pairs. 

Grouping like terms, we have: 

23-322+42-12 = 22(2-3) +4(z-3) = (> +4)(z-3) 

ie z3-322+42z-12 = (z-2i)(z+2i)(z-3) 

Andso, 22 —3z2+4z-12 = 0 & (z-2i)(z +2i)(z-3) = 0 

‘Therefore, we have that z = 2iorz = —2iorz = 3. 

‘We observe that two of the roots are conjugate pairs, and when 

we look at the polynomial, we see that all of the coefficients 
are real (as expected from the C.R.T). 

  

As all of the coefficients of the polynomial are real, it means 
that the C.R.T applies. That is, given that z = 17 is a root, 
so too then,is z = 1 +1i. 

Therefore, we have two factors, namely, z— 1 + i and 2= 1 1. 

This means that (z— 1 +i)(z—1-i) = z2-2z+2 isalso a 

factor. 

As in the last example, we can factorise by inspection: 

22372241026 = (az+b)(22 -2z +2) 

That is, knowing that we are looking for a cubic, and given 
that we already have a quadratic factor, we are left with a linear 
factor, which is (az + b) . Then, comparing the coefficients of 

the 2% term and the constant term we have that: 

a=2and2b=-6&b=-3. 

That is, 223~ 722+ 10z - 6 = (2z-3)(22-2z+2) 

‘Therefore, the roots are 1 —i, 1 +1i, 3 “ 
2 

e R e S A e e 

Given that z— 1 +i is a factor of P(z) = z3+2z2—6z+k, 

then, by the factor theorem we must have that P(1 i) = 0. 

So, (1-i)3+2(1-i)2-6(1-i)+k=0-8+k =10 

k=38 

Calculators are useful in situations that involve simple 

evaluation of complex numbers. 

B ] @olfed 
(1—i)3+2(1—i)2—6(1—i)8 

     

     
A 

I T e T R e e e 

  

Let P(z) = 2> —~4z2+9z-10. Using trial and error (or at 

least factors of 10), we have: 

P(1) = 1-4+9-10 = —4 ~(z—1) isnot a factor. 

P(2) =8-16+18-10 = 0= (z—2) isa factor. 

Therefore, P(z) = (z—2)(az? +bz+c). 

Comparing coefficients of the leading term and constant term 

we have: 

a=1land-2¢c=-10&c=5



  

‘Therefore, P(z) = (z—2)(z2+bz+5). 

‘Then, comparing the coefficient of the z2 term, we have that 
b-2=-4.b=-2. 

So, P(z) = (z-2)(22-2z+5) = (z-2)[(z2-2z+1) +4] 
(completing the square) 

= (-)z-1)2+4] 

= (z-2)(z-1+2i)(z—1-2i) 

‘Therefore, P(z) = 06 (z-2)(z— 1 +2i)(z—1-2i) = 0 

Andso,z =2o0rz=1-2iorz=1+2i. 

We could have used long or synthetic division to factorize 

P(z) tothestage P(z) = (z— 1)(z2 -3z + 10).. Both methods 
are equally valid. 

Also, rather than using trial and error you could use your 

graphics calculator to help find a first real factor. 

MULEE 

11()=x>-4 x2+9-x-10 

  

  
Exercise 1.8.2 

1. Factorize the following over the complex number field. 

a 242224242 b 23-9z2+42-9 

€ 23-222+22-4 

2. Factorise the following over the complex number field. 

a Wi+ 2w— 12 b 35224925 

c B+22-2 d x*-3x2-4 

e wi—2w+4 f 24— 625 
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3. Solve each of the following over the complex number 
field. 

a 23-722+31z-25 = 0 

b 23-8224252-26 = 0 

c 24-323-222410z-12 = 0 

d 2w3+3w2+2w-2 = 0 

  @ 24~ 1123+ 224+ 332-45 = 0 

f 2 +722+162+10 = 0 

4 Giventhat %(7 1+ J3i) isaroot of 

32342224221 = 0, find all other roots. 

5. Given that (z— 1 -2i) isa factor of 223 —322+8z+5 
solve the equation 2z3—3z2+8z+5 = 0 over the 
complex number field. 

6. Given that P(2-3i) = 0, find all three linear factors 

of 23— 722+252-39. 

7 Find all complex numbers, z such that 

z4-z23+6z2-z+15 = 0 andz = 1 +2i isasolution 
to the equation. 

8. Factorise the following. 

a 223-2242z-1 b A+2-12 

9. Giventhat 2—i isarootof z3 + az> +z+5 = 0 where 
ais a real number, find all the roots to this equation. 

10.  Given that 2+3i isaroot of z3 +az>+ b = 0, where 
a and b are real numbers, find all the roots of this 

equation. 

Extra questions 

Answers  



  

Simultaneous linear equations 

in two unknowns 
Pairs of simultaneous equations in two unknowns may be 

solved in two ways, either algebraically or graphically. To 
solve means to find where the two straight lines intersect once 
they have been sketched. So, we are looking for the point of 
intersection. 

Method 1:  Graphical 

  

‘We sketch both lines on the same set of axes: 

¥ 

  

X 
12345 67\8 

Reading off the grid we can see that the straight lines meet at 

the point with coordinates (2, 5). So, the solution to the given 

system of equations is x = 2and y = 5. 

‘There are a number of ways that the graphics calculator can 
be used. 

   
    

    

    

1. Plot the graphs 

  

  

x 
Y £1()=x+7 

o 7 
R 1: Actions 

  

2. Use graph/trace 

      

        
3. Solution 

Note that the 
v f1l)=x+7 | pixels on the screen 

3 [T ""%|  producean 
i f(21,49) | approximate 

solution   

A more satisfactory way is to use the calculator to find the 

intersection. 

X 1: Actions L 
1 2: View M 
A3: Graph Entry/Edit 
5 4: Window/ Zoom |9 1: Zer® 

41,5: Trace 2: Minimum 

  

    

              

e G5 3: Maximum 
! 6 Anaze Graph. ) pormerseereey 

[E7:Table (5, 5: IMection 
o8 Geometry (5.6 dy/dx 
{14 9: Settings... . 7: Integral   

) 8: Bounded Area 

-667 |© 9: Analyze Conics M        
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Thirdly, you can use the solve facility: 

  

Similar calculations can be performed on Casio models. This 
screen uses Graph mode (5) followed by F6-draw, Shift F5- 

G-Solv and F5-INTSCT to find the intersection. 

  

B [EXE]:Show coordinates 
Yi=-x+7 
¥2=2x+1 

    
   

      

Method 2:  Algebraic 

There are two possible approaches when dealing with 
simultaneous equations algebraically. They are the process of: 

1. Elimination 

2. Substitution 

The choice of method often depends on the way the equations 
are presented. 

Elimination method 

The key step in using the elimination method is to obtain, for 

one of the variables (in both equations), coefficients that are 

the same (or only differ in sign). Then: 

L. if the coefficients are the same, you subtract one 
equation from the other - this will eliminate one of 

the variables - leaving you with only one unknown. 

2. if the coefficients only differ in sign, you add the two 
equations — this will eliminate one of the variables — 

leaving you with only one unknown. 
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As it is easier to add than subtract, we try to eliminate the 

variable which differs in sign. In this case the variable ‘y’ 
is appropriate. However, the coefficients still need to be 

manipulated. We label the equations as follows: 

x=2y=-7-(1) 

2x+3y =0-(2) 

3x(1): 3x-6y =21 -(3) 

2x(2): 4x+6y=0-(4) 

Adding (3) + (4): 7x+0 = 21 

&x =-3 

Substituting into (1) we can now obtain the y-value: 

-3-2y=-Te2y=-4doy=2. 

Therefore, the solution is x = -3, y = 2. 

Once you have found the solution, always check with one of 
the original equations. 

Using equation (2) we have: LH.S = 2X-3+3x2 =0 = 

R.H.S. 

Note that we could also have multiplied equation (1) by 2 and 
then subtracted the result from equation (2). Either way, we 

have the same answer. 

Substitution method 

The substitution method relies on making one of the variables 

the subject of one of the equations. Then we substitute this 
equation for its counterpart in the other equation. This will 

then produce a new equation that involves only one unknown. 
We can solve for this unknown and then substitute its value 

back into the first equation. This will then provide a solution 
pair. 

  

Label the equations as follows: ~ Sx—y = 4 - (1) 

x+3y=4-02)
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From equation (1) we have that  y = 5x—4 - (3) 

Substituting (3) into (2) we have: x+3(5x—4) = 4 

S l6x—-12 =4 

& 16x = 16 

ox =1 

Substituting x = 1 into equation (3) we have: 

y=5x1-4=1 

Therefore, the solution is given by x=1and y = 1. 

Check: Using equation (2) we have: LHS=1+3x1 = 4 
=RH.S 

R A T I P TN R 

Not all simultaneous equations have unique solutions. 

Some pairs of equations have no solutions while others have 
infinite solution sets. You will need to be able to recognise 
the ‘problen’ in the processes of both algebraic and graphical 
solutions when dealing with such equations. 

The following examples illustrate these possibilities. 

a Algebraic solution: 

Label the equations as follows: 

2x+6y = 8 - (1) 

3x+9y =12 -(2) 

3x(1): 6x+18y = 24 -(3) 

2x(2): 6x+18y = 24 _(4) 

In this case, we have the same equation. That is, the straight 
lines are coincident. 

If we were to ‘blindly’ continue with the solution process, we 
would have: 

3x(1)-2x(2): 0=0v 

The algebraic method produces an equation that is always 

true, i.e. zero will always equal zero. This means that any pair 

of numbers that satisfy either equation will satisfy both and 

are, therefore, solutions to the problem. Examples of solutions 

are:x=4,y=0,x=1,y=1,x=7,y= -1 In this case we say 

that there is an infinite number of solutions. 

Graphical solution: 

Graphically, ~ the  two ~4 
equations produce the same 3 

line. The coordinates of any 

point on this line will be 
solutions to both equations. 

b Algebraic solution: 

Label the equations as follows: 

246y =8 -(1) 

3x+9y =15 -(2) 

3x(1): 6x+18y = 24 -(3) 

2x(2): 6x+18y = 30 - (4) 

(4)-(3): 0=6x 

Graphical solution: 

The algebraic method 

produces an equation 
that is never true. This 

means that there are 
no solutions to the 

equations. Graphically, 
the two lines are 
parallel and produce no points of intersection. 

  

Exercise 1.9.1 

1 Solve these simultaneous equations, giving exact 
answers. 

3x-2y = -1 b 3x+5y = 34 
T sxr2y=9 3x+7y = 44 

2+dy =6 3ee2y =2 
c _ d 4x-3y = -10 2x-6y =6 
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Sx+4y = 22 ¢ Sx—9y = 34 
3x—y=-3 2x+3y = -7 

2. Solve these simultaneous equations, giving fractional 
answers where appropriate. 

3x-y =2 b dx+2y =3 
Sx+2y =9 x=3y =0 

x I_3y=4 

Bxty =0 2 
< 2x—4y = 0 d a4 =iy 

2 

3x _1 
sx+2 = 4 T3 

e 3 f | 
4x+y =2 ¥y =3 

3 Find the values of m such that these equations have no 

solutions. 

3x—my =4 " Sxty =12 
x+y =12 mx—y-= 2 

4x-2y = 12 
3x+my =2 

4. Find the values of 7 and a such that these equations 

have infinite solution sets. 

dx+my = a b 

2x+y =4 

3x+tmy =a 

2x—4y = 6 o 

Extra questions 

Simultaneous linear equations 

in three unknowns 

So far we have looked at linear equation in two unknowns. 

However, this can be extended to linear equations in three 

unknowns. Equations such as these, involving the variables x, 

y and z take on the general form ax + by + cz = k where a, b, ¢ 
and k are real constants. 

Just as for the case with two unknowns, where we required 

two equations to (hopefully) obtain a unique solution to the 

system of simultaneous equations, when dealing with three 
unknowns we will require a minimum of three equations to 
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(hopefully) obtain a unique solution. 

The solution process for a system of linear equations in three 
unknowns will require, primarily, the use of the elimination 
method. The method usually involves the reduction of a 
system of three equations in three unknowns to one of two 

equations in two unknowns. This will then enable the use of 

the methods already discussed to solve the “reduced” system. 
Once two of the unknowns have been determined from this 

“reduced” system, we substitute back into one of the original 
three equations to solve for the third unknown. 

  

We label the equations as follows: 

x+3y-z =13 -(1) 

3x+y—z =11 -(2) 

x+y-3z=11-03) 

Reduce the system to one involving two equations and two 
unknowns. 

We first eliminate the variable z: 

(2)- (1) 2x-2y=-2-(4) 

3x@2)-():  8x+2y I 22 - (5) 

Solve the reduced system of equations. 

(4)+ (5): 10x =20 ©x=2 

Substitute into (4): 

2Xx2-2y=-2&-2y=-6&y=3. 

Solve for the third unknown. 

Substituting x = 2 and y = 3 into (1): 

243x3-z=13@z==2 

Therefore the solution is given by x =2, y =3 and z = -2. 

Check: Using equation (2): 

LHS.=2+3-3x-2=11=RHS



‘We have already seen that linear equations in two unknowns 

are represented by straight lines on the Cartesian axes. The 

question then becomes, “What do linear equations in three 
unknowns look like?” 

Equations of the form ax + by + ¢z = k representa plane in 
space. To draw such a plane we need to set up three mutually 

perpendicular axes that coincide at some origin O. This is 

commonly drawn with a horizontal x-y plane and the z-axis 

in the vertical direction: 

axtbytcz =k 

In Example 1.9.5 we obtained a unique solution. This (2, 3, 
—2 means that the three planes must have intersected at a 

unique point. We can represent such a solution as shown in 

the diagram below: 

* Y 

  

There are a number of possible combinations for how three 
planes in space can intersect (or not). Labelling the planes as 
o, B and v the possible outcomes are shown below. 

All three planes parallel. 
o 

    B 
1 

Two planes coincide. 

  

    

     

  

Any line of intersection is 
parallel to the other two. 

B 

Y 

Two parallel non-coincident 
planes crossed by the third plane. 

B 

Two parallel coincident planes 
crossed by the third plane. 

  

All three planes intersect along 
a straight line. 

p 

  

All three planes intersect 
at a unique point.    
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We label the equations as follows; 

x+2y =10 -(1) 

3x+2y-4z =18 -(2) 

y+z=73 -3 

We eliminate x using equations (1) and (2): 

(@)-3x(1): —dy—dz=-12 

@ytz=3-(4) 

We are now left with equations (3) and (4). However, these 

two equations are identical. 

To obtain the solution set to this problem we introduce a 

parameter, we let z be any arbitrary value, say z = k where k 

is some real number. 

Then, substituting into equation (4), we have: 

ythk=3=y=3-k, 

Next, we substitute into (1) so that 

x+2(3-k) = 10=>x = 4+2k. 

‘Therefore, the solution is given by 

x=4+2k,y=3-kz=k. 

Notice the nature of the solution. Each of the variables is 

expressed as a linear function of k. This means that we have a 

situation where the three original planes meet along a straight 
line. 

  

Supplementary example - matrices. 
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Exercise 1.9.2 

Solve the simultaneous equations: 

Answers 

6x+4y—z 

x+2y+4z 

S5x+4y 

  

=0 

xtytz=2 

dxty =4 
—x+3y+2z =8 

4x+9y+13z =3 

—x+3y+24z =17 

2x+6y+14z = 6 

x—2y-3z=3 

x+y-2z=17 

2x-3y-2z=10 

x-y-z=2 

3x+3y-7z=7 

x+2y-3z=3 

x=2y =-1 

—x—y+3z=1 

y-z=0 

xtyt+z=1 
x—-y+tz=3 

4x+2ptz =6 

—2x+y-2z=15 

x+dz =1 

x+y+10z = 10 

 



SY5TEMS OF.LINEAR EQUATIONS 

  

Theory of Knowledge 

The Need for New Concepts and Notations 

‘Throughout history, various notations and operations were 

introduced by mathematicians when they discovered their 

current set of notations was inadequate to address certain 

new mathematical concepts. In this chapter, we have studied 

the logarithm as an inverse operation to exponentiation. 

The concept of exponentiation was used by Euclid as early 

as 300BC in ancient Greek. In other parts of the world, 

mathematicians continued to explore this concept and 

discovered new rules governing the proper use of exponents. 

However, it was not until the 17th century that the logarithm 
was first introduced by John Napier in a book titled Mirifici 
Logarithmorum Canonis Descriptio. 

During the years when the idea of the logarithm was not 

formalized in the field of mathematics, were people not able to 

find the inverse of exponentiation? Taking this mathematical 
operation as an example, have you ever wondered what people 
used before a certain concept or notation was introduced? 

In mathematics, as well as in other disciplines, before a 

concept was introduced and accepted to address a knowledge 

gap, does it mean that particular concept did not exist or 

was it irrelevant at that moment in time? What drives the 

discovery of a new concept in mathematics? Does intuition 

play a pivotal role in recognizing a gap in the current set 

of knowledge and notations before a mathematician can 

formalize and present a new concept, a new symbol, or a new 

notation? In other words, before a new mathematical concept 

is introduced did the empirical evidence or the rational 

thinking come first? Is it necessary before a new concept is 
formalized and accepted that it must have both empirical 
evidence and rational thinking? 

With respect to the written notations in mathematics, have 

you ever wondered why certain symbols and notations are 

reused in different contexts and have very different meaning? 
For example, if you are presented with (3,5), does it suggest 
a coordinate pair on the Cartesian plane or does it suggest 

an open interval between 3and 5 exclusively? Similarly, have 

you ever doubted your understanding of the difference 

between f'(x) and f(x)'? These are just some examples to 

illustrate how a precise language like mathematics can also be 

ambiguous to a certain extent. If mathematics is a language, 
what grammatical rules are you following? Is this language 
evolving with time? Or is this language static and unchanging 
over time, thus limiting its ability to communicate newer 

concepts in mathematics? 

Assumptions and Conventions 

By definition, an assumption is a claim for a concept, a thing, 

or a situation, that is accepted as true without evidence, 

justification, or proof. Conversely, by definition, convention 

is a way in which an action is usually taken or a way in which 

something is usually done. 

In mathematics, when one attempts to provide an answer 

to a question, it is necessary to show the logical deductive 

reasoning to ensure there is no error in applying the algebraic 

rules. However, does it merely mean that assumptions and 

conventions are not to be used and considered when one 

studies mathematics? If one only provides an answer solely 

based on assumptions, does it warrant the answer to be 

inaccurate? 

It is understood by mathematicians that x is x', when the 
exponent 1 is already assumed in the written notation of x. 
Similarly, the expression log x is assumed to be written in base 

10 (i.e. log,x) or the radical term Jxis already understood to 

be the same as 3/x . Do these assumptions consequently affect 
the validity of the answer? Likewise, if these assumptions are 
generally accepted as a convention in written mathematics, 

then who decides which conventions are to be adopted or 

rejected? How do cultural and historical factors influence 

these assumptions and conventions? Are these written 

mathematical conventions infallible? 

If mathematics is constructed from deductions, in which 

one must assume certain things before inferring conclusions, 
then how does it affect the validity of the conclusions if the 

original assumptions are not entirely true? If the assumptions 

were not entirely true, then would it imply the conclusion to 

be false? Or would that be considered as an exception to the 

general rule? 

If not true, then false? 

Finding an answer for every question in mathematics may be 

an impossible task despite utilizing the finite set of axioms 

and the abstract language of the subject. Most mathematics 
questions in pre-tertiary school contexts often present 
themselves into the polarity of right or wrong, correct or 
incorrect, true or false, et cetera. However, in the absence of 
correctness in the answer of a given mathematics question, 
does it immediately imply that it is incorrect? In other words, 
is incorrectness in mathematics the same as being wrong in 

mathematics? Similarly, how does inaccuracy in mathematics 
fit into the discussion of incorrectness and wrongfulness? 

Topic 1 in the Higher Level programme introduces the notion 
of proofs, and in particular, proof by mathematical induction. 
Indeed, mathematical proofs are essential for new conjectures 

to be proven and their validity accepted. However, is it right 
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to claim that we gain new knowledge in mathematics if a 

given proof is mathematically valid? If so, then is it necessary 

for everything in mathematics to be proven true first before 
one can use it? If not, then how do we distinguish those 
concepts which are infallible without proofs and those which 
are proven true, subject to the validity of the proof? More 

importantly, the foremost critical question is to ask what is 

considered to be the validity of a proof? If a proof is shown to 

be true, then does it automatically infer its validity? 

One important aspect of mathematical proofs is to provide 

generalizations of a result. The process of moving from specific 
results to a generalization is definitely an art. However, have 

you ever wondered about the potential risk in this process of 

generalization? How rigourous does one need to be in order 
to ensure the generalization is not over simplifying the result? 
If a phenomenon exists with absolute certainty, then what 

parameters must be established before it could be generalized 
with symbols and axioms? 

Similar to other subject areas, even when a certain knowledge 

claim has been proven to be true today, no one can guarantee 
its validity will withstand challenges through future times. 
Even though it only takes one example to disprove a certain 

conjecture or theorem, it involves more effort and time 

than one could ever imagine. Take geometry as an example, 

what is the shortest distance between two distinct points? 
In most primary and secondary mathematics classes, the 

shortest distance between two distinct points is a straight 

path connecting them; and this is certainly true according 

to Euclidean geometry. This is Euclid’s fifth postulate which 

dates back to 330 BC. 

If a straight line crossing two straight lines makes the interior 
angles on the same side less than two right angles, the two 
straight lines, if extended indefinitely, meet on that side on 

which are the angles less than the two right angles. 

Euclidean geometry remained unchallenged until the early 

19th century when non-Euclidean geometric concepts 

started to emerge. In Riemannian Geometry and in 

hyperbolic geometry, the shortest distance between two 
points is no longer necessarily a straight path. It is often not 

until the final year of secondary education or even in tertiary 

education when these challenges are presented and begin 

to question the first set of knowledge. When situations like 
this emerge in mathematics (or even just within secondary 
mathematics education), does it suggest that the content of 

primary and secondary mathematics is inadequate to enable 
students to appreciate the fullness of the discipline? Similarly, 
how incorrect was the first introduction of a straight path 
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being the shortest distance in the classroom? Have you ever 
questioned whether or not it is acceptable to present some not 

entirely true statement for the sake of simplifying a complex 

discussion in mathematics? 

Many students and the general public often see mathematics 

as a subject which has its strength in the provision of absolute 

certainty. However, in statistics the results are also presented 
with a tolerance level of uncertainty. How does it affect the 

validity of the result when it may not necessarily be certain? 

Conversely, if a given result is presented with 100% certainty, 

does it mean it is less valid without a certain level of deviation 

and significance level? 

Imaginary Numbers 

An imaginary number is a complex number with a real 

number and an imaginary unit. However, does the term 
imaginary number suggest that it is merely just an invention 
to satisfy the desire of mathematicians? In other words, 

when the given limits for real numbers do not address the 

additional mathematical concepts, have the mathematicians 

created this new concept to fill in the gap? The concept of 
imaginary numbers was not widely used and adopted until 

the 18th century by Leonhard Euler and Carl Gauss. When 
a mathematician cannot find known concepts and existing 

knowledge to address a new mathematical phenomenon, 

does it give him/her an automatic pass to create new sets of 
rules to govern his/her findings? 

When there is a need to define new number systems, new 

mathematical rules and theorems, or new methods in 

approaching emerging topics in mathematics, does it imply 

that the existing set of axioms is obsolete and inadequate to 
meet the new demands? If it is necessary for newer rules, is it 
better to simply create new ones as extensions of the current 
system, or is it better to start from scratch and disregard 

all existing rules? If the mathematical field continues to 

build extensions from the existing set of axioms and rules 
to facilitate new findings, will there become a time when it 

becomes impossible to extend any further?
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Relations 

Consider the relationship between the weight of five 
students and their ages as shown below. 

  

  

  

    

10 31 

12 36 

14 48 

16 53 

18 65       

We can represent this information as a set of ordered pairs. 
An age of 10 years would correspond to a weight of 31 kg. 

An age of 16 years would correspond to a weight of 53 kg 

and so on. 

This type of information represents a relation between two 

sets of data. This information could then be represented as a 

set of ordered pairs, 

{(10,31), (12, 36), (14, 48), (16, 53), (18, 65) } 

The set of all first elements of the ordered pair is called the 
domain of the relation and is referred to as the independent 
variable. The set of all second elements is called the range 
and is referred to as the dependent variable. 

For the above example, the domain= {10, 12, 14, 16, 18} 

and the range = {31, 36, 48, 53,65} . 

Notice that (10,31) and (31,10) are not the same! This 

is because the ordered pair (10,31) provides the correct 

relation between age and weight, i.e. at age 10 years the weight 

of the student is 31 kg. On the other hand, the ordered pair 
(31,10) would be informing us that at age 31 years the weight 
of the student is 10 kg! 

Summary:     

  

     
   

    
corresponds to 

y-value 

       

   

  

defining Range 
relationship 

[independent variable] ' [dependent variable] 

Set of ordered pairs 

{x )} 
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a The domain is the set of all first elements, i.e. {0, 1,2, 3, 

4,5} 

The range is the set of all second elements, i.e. {0, 1,4, 
9,16, 25} 

b The domain is the set of all first elements, i.e. {-3, -1, 

2,-2} 

The range is the set of all second elements, i.e. {4, 0, -2, 

2} 

The letter “X” is often used to denote the domain and the 
letter “Y” to denote the range. For part a this means that 
we could write X = {0, 1,2, 3, 4,5} and Y = {0, 1, 4, 9, 16, 

25} and for part b we could write X = {-3, -1, 2, -2} and 

Y=1{4,0,-2,2}. 

This is a convention, nothing more. 

Rather than giving a verbal description of how the 

independent variable and the dependent variable are related, 
it is much clearer to provide a mathematical rule that shows 
how the elements in the range relate to the elements in the 
domain. 

  

a The domain of this relation is given by the x-values, 
ie. {0, 1, 2, 3, 4}. We can therefore substitute these 

values into the equation y = x + 2 and determine their 
corresponding y-values. This will provide the range of 

the relation.



  

Substituting we have, x = 0=y = 0+2 = 2 

x=1=2y=1+2=3 

x=2=y=2+2=4,andsoon. 

This produces a set of y-values {2, 3, 4, 5, 6} that defines the 
range. 

b The set of ordered pairs would be {(0, 2), (1, 3), (2, 4), 

(3,5), (4, 6)}. 

Notice that we can describe the set of ordered pairs more 

formally as: 

{Op)y =x+2,x€{0,1,2,3,4}} 

which is read as: 

“The set of ordered pairs x and y, such that y = x + 2, where 

x is an element of the set of values {0, 1, 2, 3, 4}” 

The information in Example 2.1.2 can be displayed in different 

ways. Both those shown are visual displays - they show the 
mappings in different ways. 

Mapping diagram 

The mapping diagram below displays which y-value 
corresponds to a given x-value. 

Domain (X) Range (Y) 

However it is often not easy to see the ‘pattern’ 
between the variables with this style of diagram. 

Cartesian plane 

The Cartesian plane is made up of a horizontal 
axis (independent variable, X) and a vertical 

axis (dependent variable,Y). 

Y, 

  

X 
01234 

We plot the points on the grid, so that (3, 5) is 3 

units to the right and 5 units up. 

Notice that in the mapping diagram that uses the Cartesian 

plane, we have not joined the points together in a straight 

line. This is because the domain specifies that the only values 

of x that can be used must be from the set {0, 1, 2, 3, 4}, and 

s0 a value such as x = 2.4 cannot be used. 

Both these visual representations are useful in displaying 

which values in the domain generate a given value in the 
range. However, the Cartesian plane more readily gives a 

quick overview of what the underlying relationship between 

the two variables is. It is very easy (and quick) to see that as 

the x-values increase, so too do the y-values. We can do this 

by simply looking at the points on the graph and observing 

the ‘trend’ without really concerning ourselves with what the 

actual values are. 

We now provide a formal definition of the Cartesian plane 

and a relation. 

The Cartesian Plane 

The Cartesian  plane 

(named  after Rene 

Descartes - see picture) is 

formed by constructing 

two real lines that intersect 

at a right-angle where the 

point of intersection of 
these two lines becomes 

the origin. The horizontal 

real line is usually referred 
to as the x-axis and the 
vertical real line is usually 
called the y-axis. This also implies that the plane has been 

divided into four quadrants. Each point on this plane is 

represented by an ordered pair (x,y) where x and y are real 

numbers and are the coordinates of the point. 

  

2nd Ist 
quadrant | quadrant 

  

3rd 4th 

quadrant [ quadrant 

‘The set of all ordered pairs (x, ), where xe X and y€ Y can 

also be defined by making use of the Cartesian product, 

XxY ={(xy):x€ X,y€ Y} 

87



Implied domain 

So far we have looked at examples for which a domain has 
been specified. Suppose we were asked to find the range of 

the relation y = 1+x2 x>37 After sketching its graph, we 

would determine its range to be [10, o). However, what if we 

wanted to know the range of the relation y = 1+ x22 In this 

case, because we have not been provided with any restriction 
on the x-values, we will need to assume that we can use the 
largest possible set of x-values for which the relation is 
defined - this domain is known as the implied domain 
(or maximal domain) - in this case that would be the real 

number set, R . Then, after sketching the graph of y = 1+x2 
for all real values of x we would have a range defined by [1,e0). 

  

a Using a calculator to 
sketch the graph of y = Jx-3 

(i.e. the square root relation) we 

observe that its domain is [3,00). 

Now, let’s take a closer look at 

why that is the case. 

Because we are dealing with an expression that involves a 
square root, then, the term ‘inside’ the square root (radicand) 

must be greater than or equal to zero (as we cannot take the 

square root of a negative number). 

So, we must have that x—3>0¢ x>3. Therefore, the 

implied domain is {x: x>3}. 

From the graph, the range can be seen to be [0,e0). 

It should be noted that the TI-83 uses the implied domain 
when graphing. Also realise that from the sketch, we could be 

misled into thinking that there is a ‘gap’ at the point (3, 0). Be 

careful with this — use the graphics calculator as an aid, then, 

double check to make sure. 

b ‘The equation: 
2 
  y= 
X=3  represents 

the reciprocal of a square 

root relation. 
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As in part a, we must have that x =320 & x 2 3. 

However, this time we have another restriction — we cannot 

divide by zero and so we cannot include x = 3 in our domain. 
So, at x = 3, we draw an asymptote. 

We then have x— 3 >0 ¢ x > 3. This leads to a range of (0,0) 

(or J0,eo). 

  

  

eerfy [ 

c ‘The only restriction ,;“ 

that can be readily : 
seen for the relation i 

  -3 e 
e 1 10 

  
2=X | 

is that we cannot divide f1()-—— 

by zero and so, we must ( 2-x 

have that 2 - x# 0. That 

is, x#2. 

As it is a reciprocal relation, we have an 
asymptote at x = 2. So, the domain is given by 

J-0,2[ U 12,0 or simply, R\{2}. 

The range can then be seen to be R\{0} . 

  

Exercise 2.1.1 

1 State the domain and range of the following relations. 

a {(24).0-9),(-24). (39} 

b {(12),(23),(34),(56), (7.8), (9,10)} 

¢ {(0.1).(0,2),(1,1), (1.2)} 

2 . Find the range for each of the following. 

a {(xp)y=x+1LxeR"} 

b {rp)y2x,x20} 

c y=x +2x+1,x>2 

d y=2x-x%xeR 

e x2+y?=9,-3<x<3 

f Koyt =9,x23 

g y=x-1,0<x<1 

h y=4-x2-2<x<1



  

3 State the range and domain for each of the following 
relations. 

A 
a 

  

  

  

  

  

4. Determine the implied domain for each of the 
following relations. 

2x = B = 2 b = 
S P A 

c v = 1622 d y=dx2-4 

2 _x=3 = e xXy—x £ ¥y P 

2 

8 YT en 

5 Find the range of the following relations. 

a y=x-a,x<0,a>0 

ab =422 > b v x+1,x,0.ab>0 

c y=a2x—ax2,12%a,a>0 

d y=a2x—ax2,x2%a,a<0 

e y=§+a,a>0 

Extra questions 

  

Functions 

There is a special group of relations which are known as 
functions. This means that every set of ordered pairs is a 
relation, but every relation is not a function. Functions 
then make up a subset of all relations. 

A function is defined as a relation such that each domain 

element has a unique image in the codomain. That is a 

function is a relation for which no ordered pairs have the 
same first element. 

For example, the function 'Take a real number, double it and 

add one' is commonly expressed in mathematica not ation as: 

S(x)=2x+LxeR or f:RHR,f(x)=2x+1 

‘When you use a function on a calculator (such as x?) you geta 

single answer - not a choice. This is why mathematicians like 

functions - they remove doubt! 

There are two ways to determine if a relation is a function. 

Method 1: Algebraic approach 

For Method 1 we use the given equation and determine the 
number of y-values that can be generated from one 
x-value. 

  

a From y3—x = 2, we have y = 3/2+x, then for any 
given value of x, say x = a, we have that y = ¥2+a 

which will only ever produce one unique y-value. 

Therefore, the relation y*—x = 2 is a function. In 

fact, it is a one-to-one function. 

b From 2 +x = 2, we have: 

yr=2-xoy=*+L-x. 

Then, for any given value of x, say x = a (where a <2), 

we have that y = +./2 - a, meaning that we have two 
different y-values; y; = #2-a andy, = —42-a,for 

the same x-value. 

Therefore, this relation is not a function. 
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Method 2: Vertical line test 

Step 1: Sketch the graph of the relation. 

Step 2: Make a visual check of the number of times a vertical 

line would cut the graph. 

Step 3: If the vertical line only ever cuts at one place for 

every value in the domain the relation is a function. 

In both these examples, any vertical line (ruler) cuts the graph 
in at most one place. 

Vertical Line Test 

2 

  

  

‘The first example is known as a 'one to one' function. The 
second is known as 'a many to one function' as many (in 
maths this 'means more than one') x values produce one y 
value. 

  
Many x values 
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a Clearly, we have every first element of the ordered 

pairs different. 

This means that this relation is also a function: 

b A graph provides a visual check. 

From the graph shown, a vertical line 
drawn anywhere on the domain for 
which the relation is defined, willcut 11 ¢, (x)-x3 +1 
the graph at only one place. T 

This relation is therefore a function. 

c Again we make use of a visual approach to determine 
if the relation is a 

function.     

  

First we write the relation in 

a form that will enable us to 

enter it into the calculator: 

P =xoy==+/ 

1 

We can therefore define the 
relation Y, = JX andY, = ~J/X and sketch both on the 

same set of axes. 

Placing a vertical line over sections of the domain shows that 
the line cuts the graph in two places (except at the origin). 
Therefore this relation is not a function. 

Algebraic proof 

We can also determine if a relation is a function by using 
algebraic means. Begin by choosing a value of x that lies in the 
domain. For example x = 4. This gives the following equation: 
P =4y =14, 

From which we can say that when x =4,y =2and y = -2, 
so that there are two ordered pairs, (4, 2) and (4, -2). As we 

have two different y-values for one x-value this relation is not 

a function.



  

d This relation describes the equation of a circle with 

radius 4 units and centre at s 

the origin. The graph of this 
relation is shown alongside. 
The graph fails the vertical 
line test, and so is not a 
function. 

   

  

two cuts 

(B e~ S P G B s i) 

Exercise 2.1.2 

L A function is defined as follows, fix »2x+3,x20 

a Find the value of £(0), A1) . 

b Evaluate the expressions: i fix+a) 
ii fix+a) —flx) 

c Find {x:f(x) =9}. 

_ o x 
2. If flx) = T+ ¥ € [0,10], find 

a 0), f(10) b {xiflx) = 5} 

X 

x+1 
  c the range of fix) = .x€ [0,10]. 

3 For the mapping x+ 2 — %xz, xe R, find: 

a fix+1), flx=1) b a, given that f{a) = 1 

€ b, given that f{h) = 10. 

4. A function is defined as, y = x> —x% x € [-2,2] 

a Find the value(s) of x such that y = 0. 

b Sketch the graph of y = ¥-x%xe[-2,2] and 

determine its range. 

5. The function f is defined as f:]-es, o[ = R ,where 

flx) = x2—4. 

a Sketch the graph of: 

i f ii ¥ =x+2,x€ J-oo,00] 

b Find: i frifto= 4} 

ii {xif(x)= x+2} 

Extra questions 

  

UNCTIONS AND EQUATION 

0Odd and Even Functions 

Functions can be classified into three categories based on the 

symmetries of their graphs. 

Even functions 

If a function has line symmetry about the y-axis, it is said to 

be even. 

  

Formally, a function is even if f{x) = f(-x) for all x in the 
domain. 

The most obvious examples of even functions are the even 

polynomials 

,e.g. |x], ¥, x*, cos(x) and cosh(x). 

0Odd functions 

A function is odd if it has two-fold rotational symmetry 

about the origin. If the graph is ‘pinned’ at the origin and 
turned through 180°, it will fit back over the original graph. 

Formally, a function is odd if f{x) = -f(-x) for all x in the 
domain, e.g. x, ¥, sin(x) and sinh(x). 

      § __E 
y=2 58 +x 
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The concept applies to other, non-polynomial functions. 
The cosine function is even, the sine function is odd and the 
logarithm function is neither. 

Not every function is either odd or even. Most functions are 

neither. 

     § o3 : 
o= 2% =5 tx+) 

  

a Neither odd nor even. 

< Even 
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Exercise 2.1.3 

1 Classify the following functions as even, odd or 

  

  

neither. 

a y=4 b 

¢ y=@-1 d 

e y = I f 

) 
g = B h 

i 3 
i yi= %{ +x 

2 Prove that the product of two even functions is even. 

3. Is it necessary for £(0)=0 for a function to be odd? 

4. Explain why the composite of two odd functions is 

odd. 

5. Prove that the quotient of two even functions is even. 

6. A function has the full real line as its domain and is 
both odd and even. What is the rule for the function? 

Basic operations and composite 

functions 
For any two real functions f dp~R.y =Ax) and g 

dR.y = g(x),defined overdomains dyand d, respectively, 
the following rules of algebra apply: 

Addition 

(f+g)(x):f(x)+g(x),d/” =d,Nd, for example: 

f(#)=Vx,x20andg(x)=x,veR 

(/+g)(x)=«/;+x,x20 

‘The domain of the sum is the intersection of the two functions 
that make up the sum - both functions have to 'work' for the 
sum to exist. 

Subtraction 

(f-£)w0)=/(2)-g(x).d,  =d,0d, 

F(x)=Vx,x20and g(x)=x,x€R 

(/-g)(x)=Vxr-xx20



  

Multiplication 

(fxg)x)=f()xg(x).d ) =d, Od, 

f(x)=Vx,x20and g(x)=x,xeR 

(fx&)(x)=Vrxx,x20 

Division 

(f+£)(x)=/(x)+g(x) 

The basic domain is, as before: @, =4, Nd,. However, we 

must also exclude cases in which we would be dividing by 
zero. Thus, values in the domain for which g(x)=0 must 

also be excluded. 

For example: /(x)=vx+1,xr2-1and /(x)=x,xeR 

Ja+l 

x 

  (g+7)(x)= Xx,x2-1Lx#0 

Composite functions 

‘We now investigate another way in which we can combine 

functions, namely composition. 

Consider the two functions f{x) = 3x and g(x) = x2+1. 

Observe what happens to the value x = 2 as we first apply 
the function f(x) and then the function g(x) to the image of 

the first mapping, i.e. 

  

fx) = 3x g(x) = x2+1 

- E - - £3 f 3 3 
=3 a4 & 
SE S 5= 
33 R o I 
s & = ¥ 

- £ i® 

Such a combination of functions leads to the question “Is 
there a third function that will enable us to produce the same 
result in one step?” 

We consider any value x that belongs to the domain of f and 
follow ‘its path’: 

1 This value of x, has as its image the value f{x) = 3x. 

2 The resulting number, 3x, now represents an element 
of the domain of g. 

& The image of 3x under the mapping g is given by 
2(3x) = (30)2+1 = 9x2+1. 

Step 1 
‘multiply x by 3: 

Step 2 
square (3x) and add | 

  

           Apply g(x) rule 

o0 % AN 

Brovide the end eSS 
&(fix) 

Apply fi(x) rule 

      by Uiy 

‘We can now test our result by using the value of x = 2 with the 
mapping x~ 9x2+1. 

For x = 2, we have 9(2)>+1 = 9x 4+ 1 = 37, which agrees 

with our previous result. 

The two critical steps in this process are: 

1 That the image under the first mapping must belong to 
the domain of the second mapping. 

~ The expression g(/(¥)) exists. 

  

Although fis applied first, it is placed second in gof . 

  

‘The composite function (gof)(x) = g(f(x)) 

= In(fix)-1) =In(x2+1-1) = Inx? 

  

‘The composite function (gof)(x) = g(f(x)) 

= Jf-1 =J2-0-1 =1-x 

R N P e e Sy SR S [T 
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In the previous example,. we have: 

(goN)(-1) = JT=(-1) = /2 but 

(g0/)(2) = J/1-2 = /-1 is undefined! 

So what went wrong? To answer this question let’s take 
another look at the composition process. 

The process is made up of two stages: 

Stage1:  An element from the domain of the first 
function, f(x) is used to produce an image. 
That is, using x = a we produce the image f(a). 

Stage 2: Using the second function, g(x), the image, 

fla) ,is used to produce a second image 

g(fta)) . 

Stage 1 

From the diagram, the result of stage 1is f(a) (which belongs 
to the range of f) we also observe that at stage 2, when using 
the value f(a) (produced from stage 1) we have assumed that 

fla) belongs to the domain of g(x) . This is where problems 
can arise - as seen in Example 2.1.8. 

To overcome this difficulty we need to strengthen our 
definition of composition of functions as well as ensuring the 
existence of composite functions. 

‘What we need to prove is that all values produced from stage 
1,ie. f(a) , are values in the domain of the function in stage 

2,ie. fla) € d,. Making use of a mapping diagram, we show 

the inter-relation between the range of f, 7/, and the domain 
ofg d, 

  
For (gof)(x) = 2(f(x)) to exist, then = dg. 
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What is the domain of gof? 

If we refer to the diagram 
alongside, we see that 

if ryc dy, then d,, . = 

This means that we can /go ’ 
substitute values of x that 

belong to the domain of f directly into the expression g(/(x)) 
(once we have established that it exists). 

    

For gof to exist we must have that 7, d, . 

Using the TI-83 we obtain the range of f from its sketch, in 
this case, 77 = (1,2). 

The domain of g is (~eo,e0) (i.e. the real field). 

Then, given that (1,00) C (—s0,0), gof does exist. 

‘We are now able to determine gof . 

First we determine the equation g(f(x)): 

80 = g(WmF D = (D =G 1) 

Next we need the domain of gof . 

As we have seen, d,,, = dp, .dgop = (0.2). 

Therefore, g0/ : 01 R . (o)) = (r+ 1) 

[T umeSSER s — = = v NP i eoesl S MRS 

Hint on setting out 

When solving problems that involve the use of composition, 
it is useful to set up a domain-range table in order to help 

us determine the existence of the composition. Such a table 

includes information about the domain and range of both the 
functions under consideration: 

  

domain | range 

4 
    

  
     



  

The existence of gof can then be established by looking at /- 

and dg . Similarly, the existence of fog can be established by 

comparing r, and d;. 

  

We first sketch the graphs of both functions to help us 
complete the domain-range table: 

g0 = — LreR(1}, fn = 2ixeR. 

  

  

    667 
  

‘We now complete the table: 

domain | range 

f R 

g R\{0} 

  

    

  
Using the table we see that re dg => gof exists. 

11 
fo+1 T 2v+1” 

  We can now determine gof : g(f(x)) = 

We also have that dy,, = df, .dy, =R. 

Therefore, gof : R=R, where (gof)(x) = L. 
25+ 

Making use of a calculator we see that the range of gof is 

10, 1[. 

£2(x)=1 

    

  

For fog to exist it is necessary that rggd,, To determine 

the range of g we need to know the domain of g. Using the 
implied domain we have that d, = 10,.0[ and 50, 7 =R . 

However, the implied domain of fis [1, o[ . Then, as r, z d, 
, fog does not exist. 

In order that fog exists we need to have rg C [1,9[, i.e. we 

must have that g(x) 2 1. What remains then, is to find those 
values of x such that g(x)>1. 

Now, g(x) = Inx therefore, g(x)21 e Inx>1ex2e. 

So, if the domain of g is restricted to [e, e[ or any subset of 

[e, oo, then fog will exist. 

Does gof = fog? 

In general the answer is no! However, there exist situations 
when (fog)(x) = (gof)(x) - we will look at such cases in the 

next section. 

Consider Example 2.1.10, where g(x) = fi,xsk\(fl} 

and f{x) = 2, xe R. 

1 

2°+1 

  From our previous working, we have that (go/)(x) = 

To determine if (fog)(x) exists, we will need to determine 

if r,cd,. Using the domain-range table we have that 
ry =R\{0} and dr=R. Therefore as r, cdj=fig does 

exist. 

A 
We then have, (fog)(x) = fig(x)) = 280) = 23+ 

To determine the domain of fog, we use the fact that, 

dpg = dy so that d, = \{RI}. 

L 
Then, fog:R\{-1} R, where (fog)(x) = 2¥* 1. 

In this case, (fog)(x) # (gof)(x). 
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‘We first set up the domain-range table: 

domain 

710l 
  

    
     

From the table we see that r, < d/ and 
rycd,, and so, both (fog)(x) and 

(gof)(x) exist. We can now determine 

both composite functions. 

‘We start with (fog)(x): 

(fog)(x) = flg(x)) = (g(x)? +1 

= (x-1)2+1 

  

As dy,, = d, = [1, [, we have that: 

(fog)(x) = (x—1)2+ 1, wherex>1 

Next, we find (g0/)(x) : 

(goN(x) = g(fx)) = flx)~1= (2+1)—-1 = x? 

Also, dy,, = dy = [0, %[ ,andso, (go/)(x) = x?, where x>0 

To find the image of 3, we substitute x = 3 into the final 

equations. 

(fog)(3) = (3-1)2+1= 22+1= 5, 

whereas, (g0/)(3) = (3)2= 9. 

Exercise 2.1.4 

1 Fully define the functions: a f+g b /g given that 

i fx) = x2 and g(x) = Jx 

i fix) = Inx and g(x) = )‘-{ 

i f(x) = 9—x2 and g(x) = P-4 

Find the range for case a. 
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Fully define the functions: a f~g b /g (and find 

the range for case a) given that 

i Sfix) = e¥ and g(x) = 1 -¢€° 

ii Aix) = x+1 and g(x) = A+ 1 

i f(x) = [r-2| and g(x) = x+2] 

All of the following functions are mappings of R=R 
unless otherwise stated. 

Determine the composite functions (fog)(x) and 

(g0of)(x), if they exist. 

For the composite functions in part a that do exist, 
find their range. 

i ) = x+1,g(x) = x° 

ii fix) = 22+1,g(x) = Jrx20 

i ) = (x+2)4g(x) = x-2 

W A0 = Lxrog = Lx#0 

Sx) = 2%, g(x) = S, x20 

Vi ) =P 1g = Lxk0 

Vi fn) = Lxe0.g00 = ;lz-,x¢0 

Given the functions f x » 2x + 1, x € |-oo,00[ and g: x 

X+ 1, x € ]-0o, o[, Find the functions: 

a (fog) b (g ¢ (fof) 

Determine the function g, given that fixwx + 1, xe R 
and gofix x>+ 2x+2,x€ R, 

The functions f and g are defined by fix+x+1,xe R 
and gixesx +£,x € R\{0}. 

Find the composite functions (where they exist) of the 
following, stating the range in each case. 

a  fog b gof ¢ gog 

Ifg:xwx3+1,xe Rand fixmi/x, x € [0, o[ , find: 

a (go)4) b (fog)(2) 

Given that fixwx+5xe R and hixmx-7,x€R, 

show that (foh)(x) is equal to (f0f)(x) forall xe R.



  

9. If f(x)=4x+1 and g(/(x))=16x"+8x+4, find 

£(x). 

10. If f(x)=2++1 and g(f(x)):%\/4x’+4x+2, 

find g(x). 

11.  Solve the equation (fog)(x) = 0, where: 

a fxrx+5xe R and gxmx?—6,x€ R, 

b fixw?—4,xeRand gxmx+lxe R, 

12.  Given that fixw2x+1,xe R, determine the two 

functions g, given that: 

1 
a (goN)(x) = ¥ 

  = 1 
b (fo)(x) = 5= 

Extra questions 

Identity and inverse functions 

Before we start our discussion of inverse functions, it is 

worthwhile looking back at a fundamental area of algebra 
— algebraic operations. The relevant algebraic properties for 

real numbers ae R, be R and ce R are: 

Closure a+tbeR 
  

  

  

  

  

  

  

Commutativity a+b =b+a 

Associativity (@a+b)y+c=a+(b+c) 

oot o ovasa 
Inverse element a:a+(-a) =0=(-a)ta 

o [t 
Closure axbeR 

Commutativity axh = bxa 

Associativity (axb)xc = ax(bxc)         

  

"FUNCTIONS AND EQUATIONS 

  

  

      

Existence of the 
identity 1.axl =1xa=a 

1 Inverse element i (l)xa 1= ax[l] 
a,\a 5 
  

Just as there exists an identity element for addition, i.e. 0 

and for multiplication, i.e. 1 under the real number system, 
it seems reasonable to assume that an identity element exists 
when dealing with functions. 

Tt should be noted that without an identity element, equations 
suchasx+2 = 7 and 2x = 10 could not be solved under the 
real number system. Because we take the process of solving 

these equations for granted, sometimes we lose sight of the 
underpinning algebraic process that led to their solution. 

For example, to solve x+2 = 7 we would write x = 5 as the 

next step. However, if we break the process down we have the 

following: 

x+2=7&x+2+(=2) = 7+(=2) (Inverse element) 

ex+0 =75 (Identity) 

ex =5 

So that without the identity element, we would not be able to 

make the last statement! 

Consider the two functions / * #R, ¥, x € R and 
g:x»R.x°, x € R. The composite functions fog and gof 
exist. The composite functions are then given by: 

(fo)x)=/((x) =g @)=+ 

and 

(eo/)0)=8(/()=(/(x)) =(¥7) =x. 
For this particular example we have the result that: 

   

fg(x)=x=g(/ (). 

Using an analogy to the algebraic properties for the real 
number system, we introduce the identity function. 

Identity function 

We define the identity function, I, as - 

If an identity function, I, exists then it must have the 

property that for any given function f 
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As we have already seen, it is found that a function with the 

rule /(x) = x has the required properties. However, unlike its 

counterpart in the real number system, where the identities 
are unique, the domain of the identity function is chosen to 
match that of the function f. 

For example, if /) = +% x>0 then I(x) = x where x20. 

Whereas if f{x) = 2x , x € ]-eo,00[ then I(x) = x where x 

€ ]-eo,e0[. 

The existence of the identity function leads us to investigate 
the existence of an inverse function. 

Inverse function 

Using an analogy to the real number system, the concept of 

an inverse requires that given some function £, there exists an 

inverse function, f*, such that 

The ‘~1” used iln f! should not be mistaken for an exponent, 
ie flx)e-—"1! S 7 

Looking back at the two functions f:x~R 3. xeR 

and g :x~R.x%, x€ R we notice that the function g is the 
reverse operation of function f, and function f is the reverse 
operation of function g. Making use of a mapping diagram we 
can ‘visualise’ the process: 

L 

1. Use an element (x) from the domain of the function f 
and obtain its image f (x). 

2. Using this image, which must be an element of the 
domain of g we then apply g to f{x) and obtain its 
image, g(f(x)) resulting in the value x that we started 
with. 

1. Use an element (x) from the domain of the function g 

and obtain its image g(x). 
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2 Using this image, which must be an element of the 
domain of f, we then apply f to g(x) and obtain its 
image, f(g(x)) resulting in the value x that we started 

with. 

We can now make some observations: 

1. ‘The domain of f, d;, must equal the range of g, 7, and 
the domain of g, d, must equal the range of f; r,. 

2. For the uniqueness of x’ to be guaranteed both fand 

¢ must be one-to-one functions. 

‘We therefore have the result: 

If f and g are one-to-one functions, such that 
fg(x)) = x = g(fix)), then g is known as the inverse of f 

and fas the inverse of g. 

In our case we write, g(x) = f'(x) and f{x) = g~'(x) . This 

then brings us back to the notation we first introduced for the 

inverse function. We summarise our findings: 

For the inverse function of f, f* (read as finverse) to exists, 
then: 

1. fmustbea one to one function. 

2.i  thedomain offisequal to therange of f, i.e. df = i}l 

i the range of fis equal to the domain of f 1, ie.d .| = ry 

S AF) = x = S 

How do we find the inverse 

function? 
A guideline for determining the inverse function can be 
summarized as follows: 

Step 1: Check that the function under investigation is a one- 
to-one function. This is best done by using a sketch of 
the function. 

Step 2: Use the expression /(/~!(x)) = x to solve for /! (x). 

Step 3: Use the fact that dfl = rp.and dy = i 

the problem. 

  

, tocomplete



  

We start by checking if the function is a one-to-one function. 

From the graph, it is clearly the case that 
%) is a one-to-one function. 

Making use of the result that 
A(f1(x)) = x tosolve for f1(x): 

A1) = s +2 

Then, Af'(x)) =x=5/1(x)+2 =x 

e 5l =x-2 

& I = 3e-2) 

To complete the question we need the domain of /. We 
already know that @ _ = r, , therefore all we now need is 
the range of f, so df_l = R (using the graph of f(x)). 

Thatis, £-1 :R=R where /-1(x) = é(x— 2). 

A quick sketch of the graph of f verifies that it is a one-to-one 
function. y 

2 
We can now determine the inverse 

function, /1(x): { - 

Now, AF1(x)) = Jf1(x) +2, 0, using ff (x)) = x we have: 

W = x & f1(x)+2=x2 (squaring both sides) 

e fla) =a2-2 

To fully define /! we need to determine the domain of /! . 

‘We do this by using the result that df‘ =7 

  

Using the graph shown above, we have that r, = [0,0 
w.d = [0, [ . We are now in a position to fully define the 

inverse function. 

We have, /1100, =) R f 1) =522 

We can now sketch the graph of the inverse function: 

  

‘We make two important observations: 

1. The graph of y = f!(x) is the graph of y = f(x) 
reflected about the line y = x. 

2. Points of intersection of the graphs y = f(x) and 
vy = flx) will always occur where both curves meet 

theline y = x. 

The relationship between the graph of a function fand the 
graph of its inverse function /! can be explained rather 
neatly, because all that has actually happened is that we have 
interchanged the x- and y-values, i.e.(a,b) < (ba). In doing 
so,wefindthatd = rp.andd,=r . 

i i 

T}}is then has the result that the graph of the inverse function 
(%) js a reflection of the graph of the original function /(x) 

about the line with equation y = x. 

   7 
Ifthe curve y = f(x) intersects with the line 
y=xthen y = f(x) and y = f~}(x) will 

meet on the line . 
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Graphing the inverse function 

Because of the nature of the functions /! (x) and f(x), when 
finding the points of intersection of the two graphs, rather 
than solving /!(x) = f(x), it might be easier to solve the 
equations f!(x) = x or flx) = x. The only caution when 

solving the latter two, is to always keep in mind the domain 
of the original function. 

One interesting function is f{x) = i, XEOL 

It can be established that its inverse function is given by: 

) = 1, x#0 

e A1) =2 = x el = —. A i i 

Then, as the two functions are identical, it is its self-inverse. 

Sketching the graph of f{x) = -. x#0 and reflecting it about 
the line y = x will show that the two graphs overlap each other. 
Note then, that self-inverse functions also intersect at points 
other than just those on the line y = x - basically because they 
are the same functions! 

There is a second method that we can use to find the inverse 
of a function. The steps required are: 

Step 1: Let y denote the expression f{x) . 

Step 2: Interchange the variables x and y. 

Step 3: Solve for y. 

Step 4: The expression in step 3 gives the inverse function, 

£l 
‘We work through an example using this method. 

  

   
Lety = fix), giving y = il 

x—1 

Next, we interchange the variables x and y: x = 

  

2 Wenowsolvefory:x=i+l0:x—l = 
y-1 y-1 

(inverting both sides) 

    

2 
Therefore, we have that ¥ = =5 * 1 

That is, S = + 1,x>1 

We notice that the original 
function y = f{x) and its 
inverse function y = f!(x) 

are the same. This becomes 

obvious when we sketch 

both graphs on the same set 
of axes. 

  

When reflected about the // 
line y = x, they are identical! 

Again, we have an example of a self-inverse function. 

  

The function g:x~ 4*—2,xe R is a one-to-one function 

and so its inverse function exists. 

Using the result that g(g!(x)) = x we have: 

£y = 

48 W=yt 

g} (x) = log,(x+2) (using N=4" & x=log,N ) 

Now, 4 A Firs ]-2, eo[ (we have obtained the range by using 

a sketch of g(x)) 

Therefore the inverse, ¢!, is given by 

ghixe logy(x+2),x>-2 

  

This time we make use of the second method of finding the 
inverse function.



  

Lety = logy(2x—1)+2, interchanging x and y, we have: 

x = log(2y—1)+2 

© x-2 = log(2v—1) 

© 2p-1=10""2 (using N = h' ey = log;N) 

o y= %(10"‘2+1)' 

Therefore, we have that /() = 3(10° 2+ 1), 

Next, = (—e0,00), so the inverse function is: 
df»x = 

Flae %( 10572 41), x e (o00) 

Let y=/(x) 
y=4x"+8x—1 

=4(x*+2x)-1 

=4(x*+20+1)-1-4 

=4(x+1)' -5 

Interchanging x and y. 

2 x=4(y+1) -5 

  

  

Since the original domain is restricted to x>-1 and the range 

is y=-5, the inverse of the original quadratic equation must be 

restricted to the domain x>-5 with the range of y=-1. 

  

CTIONS AN 

Exercise 2.1.5 

1 Find the inverse function for each of the following. 

a fix) =2x+1,xe R 

b flx) = x3,xe R 

c g(x) = %x—s.xeR 

d g(x)=§x+2,xER 

e h(x) = Jx+1,x>-1 

£ flx) = Jxtlx20 

=L 5o g /(x)—x+l,x> 1 

h b = iq,»o 

Using the graph of the original function, sketch the 

graph of the corresponding inverse function for each 
part in Question 1. 

Find and sketch the inverse function of: 

i flx) = x2-3,x20 

b fix) = x2=3,x<0 

x 
Show that fix) = 

function. 
   

  

,xe R is a one-to-one 

Hence find its inverse. 

Sketch the inverse of the following functions. 

a b 

  

L = 
x 

) YA 

4 4 

x 
4 2 x   
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12. 
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Find the inverse function (if it exists) of the following. 

  

  

14. 

a flx) = 3"+ L,x€ oo, 00 

b flx) = 2'=5,xe oo 00, [ 

¢ ) =3 xe Jes oo b 

d gx)=3-10""xe Jeo oo 

_ .2 e h(x) = Prawikady 

f 8= Lolxe Jomoof 15. 

Using the graph of the original functions in Question 

6, sketch the graph of their inverses. 

Find the inverse function (if it exists) of the following 16. 
functions: 

a fix) = logy(x+1),x>~1 

b fx) = log(2x),x>0 

c h(x) = 1-log,x, x>0 

d g(x) = logy(x—1)~1,x>1 

e h(x) = 2logy(x—5),x>5 

£ A0 =23, 1), x<1 

Find the inverse function of f(x) = x2+2x,x>~1 , 

stating both its domain and range. Sketch the graph of 

ft. 

Find the inverse function of: 

17, 

a flx) = —x+a,xe ]-eo, 0o , where q is real. 

b h(x) = ——+a,x>a, where q is real. 
x-a 

c flx) = Ja*-x2,0<x<a, where a is real. 

Find the inverse of A(x) = —x3+2 xe R. Sketch 

both /(x) and /~!(x) on the same set of axes. 

Find the largest possible set of positive real numbers S, 
that will enable the inverse function /4! to exist, given 

that h(x) = (x-2)%,x€ S. 

Determine the largest possible positive valued domain, 

  

X, so that the inverse function, /1(x) , exists, 

. _3x+2 
given that f(x) = PP X. 

Extra questions 

Answers 

a Sketch the graph of flx) = x— i, x>0, 

Does the inverse function, /! exist? Give a reason for 

your answer. 

1 
Consider the function & * S = R where, g(x) = = 

Find the two largest sets S so the inverse function, g!, 
exists. Find both inverses and on separate axes, sketch 

their graphs. 

1 wherea> 1. 
Na 

On the same set of axes sketch both the graphs of 

y=/fx)and y = f(x). Find {x: f(x) = f1(x)}. 

  

Find /! given that f{x) = 

Find and sketch the inverse, /!, of the functions: 

a flx) = 

-3, x<1 

b flx):{e"‘, x<0 

xte, x>0 

c fx) = { =In(x-1), x>2 

2-x, x<2 

d /mz{J}H, x>0 
x+4, -4<x<0 

a On the same set of axes sketch the graph of 

flx) = i In(x—a),x>a>0 and its reciprocal. 
a 

b Find and sketch the graph of £ . 

 



  

ngineers designing a road through mountanous terrain 
will want to minimise the earth moving necessary to 

provide a reasonably level road. Bridges and tunnels are 

even more expensive. The choice of the right route’ is a task 
requiring considerable skill. 

The terrain will almost certainly not follow a simple 
mathematical formula. Instead, it will be a set of data points 

and a 'graph’. 

  

  

Horizontal zero altitude’ 

The set of data points can now be treated as a graph. This can 

be used to estimate the amount of earth that will need to be 

moved if a particular route is chosen. 

This section will deal with the visual aspects of graphs. We 

begin by reviewing some of the main features of graphs. 

Domain and Range 

‘The domain is the horizontal extent of a graph. 

The range is its vertical extent. 

By convention, points represented by solid dots are included 

in the graph and points with open dots are excluded. 

  

Domain -2<x<4 

Intercepts 

The points at which a graph cuts the axes are known as 

intercepts. Note that a function can have at most one intercept 

on the vertical axis. 

¥ y intercept     
X inftercepts| 
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Maxima and Minima Asymptotes 

These are the peaks and valleys on a graph and are not Some graphs approach, without ever reaching, other lines on 
necessarily the highest and lowest overall points. a graph. This is known as asymptotic behaviour. 

Y, 
YA maximum 

  

OR: 

Symmetry 

The two main types of symmetry encountered are: 

1. Reflection (a line of symmetry): 

J 

  

Note that this last example fails the vertical line test and is not 
a function. 

Graphs modified by the absolute value function 

  

The absolute value function has no effect on a positive number, 
but makes negative numbers positive. A graphing calculator 

2. Rotational symmetry (often, though not always, about is a good way to explore this as the examples will show. 
the origin). 

1. Comparing the graphs of y= /(x) and y=|/(x). 

The skill here is to take a graph and convert it to the absolute 

value graph. If using a calculator, begin with a simple function 
such as 

  

  

  

— 7 
& 1(dx?-5 x41         
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Next, add the absolute value of the function: 

667 %y 

afdhs | | 
  

10 1 10, 

v f1(d)=x?-5-x+1       
The parts of the graph above the x-axis are unchanged as the 
absolute value function leaves positive numbers unchanged. 

The parts of the graph below the x-axis are reflected in the 

x-axis as the absolute value function makes negative numbers 

positive. 

Here is a second example: 

  

  
Again, the negative parts of the blue graph have become 

positive. Note that the viewing window has been adjusted 

using ZOOM. 

A useful way of seeing this is as a composite function with 

the absolute value function happening second - abs( /(x)). 

2. Comparing the graphs of y= f(x) and y=f(|«]). 

This is the composite in the reverse order - and we have 
already seen that we should not expect the same result. The 
first thing to happen is that the x values are made positive. 

They are then fed throgh f. The result is a left-right symmetric 

graph based in the right hand half. 

Looking again at the first example. 

The base function is: y=x*—5x+1. 

The composite is_y =]’ —5/x]+1. 

Now look at the two graphs: 

  

  

      
The graph to the left of the y-axis is a mirror image of the 

graph to the right. 

When answering questions on this topic, remember that you 

will not be given an algebraic rule and will not be able to use a 
calculator. You will need to 'see’ the symmetries of the shapes. 

Some functions you might like to try using your calculator 

are:  p=ax+b, y=ar(x—b), y=x", p=alog(bx) where 
you can choose values for a & b. 

Reciprocal Functions 

How are the graphs of the two possible composites of a 

function defined by y= f(x) and the reciprocal function 

related? 

To begin with, recall that the reciprocal of a big number is 

small and the reciprocal of a small number is big. The sign is 
not changed. 

1 

S 
Beginning with the parabola used in previous examples: 

Comparing y= /(x) with y= 

y=x'=5x+1 

When this is big and positive, we expect the reciprocal to be 
small and positive and vice-versa. This means that we get 

vertical asymptotes to correspond with x-intercepts. 

11()=x? -5 x+1     105



  

1l 

Negative parts of the blue graph correspond to negative parts 
of the red graph. Note also how the intercpts of the blue graph 
correspond to the vertical asymptotes of the red graph. 

Here is a second example: 
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This section has been about the mathematics of 'shape’. There 
isa tendency to think of 'real mathematics'as being an activity 
that has to include a hefty dose of calculation. 

This has only ever been partly true. The ancient Greek 

mathematicians were particularly interested in the 
mathematics of shape and their thoughts form the bedrock of 
the modern discipline. 

Dr Jacob Bronowski in his excellent The Ascent of Man (both 

a book and a TV series) explains an example from his own 
work on the evolution of the skull. The example comes in the 
chapter on mathematics - The Music of the Spheres. We also 
refer to this excellent resource in the Theory of Knowledge 
section. 

Before 

working 
through the 
exercise, take 

alook at the 

‘graph’. To 
what extent 
could it be 

thought of as 
the same as a 

real mountain 
range?  



  

Dynamic Graphing 

A particularly effective way of learning about transformations 

of graphs is to use the Dynamic Graphing feature of Casio 
graphic calculators. 

MAIN MENU 

& A 
ST qfl Table Recursion Sledestioh | 

j° & 
ConicGraphs Equation  Program  Financial 

TR A 
JR1ILY Memory: System ¥ 

  

For example, if we look at the function y = x* - 2x + C where 
Cis a parameter that we can vary. 

Open the Dyna Graph module (6) and enter the function. 

  

B FH 

  

Then enter a range for the parameter (F4-VAR,F2-SET). 
  

     
B [ el 

x”~(3)-2x+C 
gynamic Setting 

Start:1 
End :5 
Step :1 

I 

  

    
  

Press EXE, F6-DYNA and the calculator will animate the 

graphs as they run through the values of C. 

    

  

  

o 
Rynamlc Setting 

Start:-1 
End :1 
Step :2 

    
  

Note that the two relevant values of the parameter A are -1 

and 1 and the necessary step between the two values is 2. 

The 'dyna’ function will now allow you to animate the 
reflection between the two graphs. 

  

Use [¢]/[3]keys. 
=(Ax)"(3)-2Ax oy 

    

  

  

Use [¢]/[3]keys. 
Ax)~(3)-2Ax     

      
  

Video 
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Exercise 2.2.1 

1. For each of the following graphs, sketch: 

i =) ii r=/() 

-1 
YT 

1. 

2. 

% 

4.   
  108   

  
2 For the following functions, graph y= f(x), 

y=|/(x), y=/(), and }/=|/(|x|){ on the same 
set of axes. 

i S(x)=3x-5 

ii S(x)=x"+4x+8 

i f(x)=V2r+5-2 

Answers 

 



Ay 
Horizontal translation 

A horizontal translation takes the form: — 

We start by looking at the transformation of the basic 
parabolic graph with equation y = x2. The horizontal 

translation of y = x? is given by y = (x—a)?. This 
transformation represents a translation along the x-axis. 

For example, the graph of y = (x - 4)? represents the 

parabola y = x2 translated 4 units to the right (a = 4): 

X 

gt y=la-4)?     
Similarly, the graph of y = (x+2)? represents the 

parabola y = x? translated 2 units to the left (a = -2): 

  

In both situations, it appears as if the graphs have been 
translated in the ‘opposite direction’ to the sign of ‘a. That 
is, » = (x+2)? has been translated 2 units back (i.e. in the 

negative direction), while y = (x-2)? has been translated 

2 units forward (i.e. in the positive direction). 

    
The reason for this is the transformation is applied to the 
x-values, not the graph. 

That is, given y = f(x), the graph of y = f{x+2) is telling 

us to ‘Add two units to all the x-values. In turn, this means, 

that the combined x/y-axes should be moved in the positive 
direction by two units (whilst the graph of y = f{x) remains 

exactly where it is): 

     
    

    
   

Y 

That is, pulling the x-axis along *+2* 
units (to the right), gives the 

.2 appearance that the y = x° parabola 
GRpliof, PA=* has *moved to the left two units. 
remains in its 
initial position. 

  

Similarly, given y = f(x), the graph of y = flx—1) is telling 

us to ‘Subtract one unit from all the x-values’ In turn, this 
means, that the combined x/y-axes should be moved in the 
negative direction by one unit (while maintaining the graph 
of y = flx) fixed at its original position): 

However, whenever we are asked to sketch a graph, rather 
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than drawing the axes after the graph has been sketched, the 

first thing we do is draw the set of axes and then sketch the 

graph. This is why there appears to be a sense in which we 

seem to do the ‘opposite’ when sketching graphs that involve 
transformations. 

That s, pulling the x-axis along *~1° 
unit (i.e. to the left), gives the 
appearance that the parabola has 
‘moved’ to the right one unit. 

    

  

      

     

Graphofy = x2 
remains i its 
initial position. 

a 

‘The graph of y = flx+1) 

represents a translation 
along the x-axis of the 
graph of ¥ = ft) by 1 
unit to the left. 

b 

‘The graph of y =/(x—-l-) 
represents a translation 
along the x-axis of the 
graph of y = flx) by % 
unit to the right. 
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Vertical translation 

A vertical translation takes on the form _ 

Again we consider the transformation of the basic parabolic 
graph with equation y = x*. The vertical translation of 
v = x2isgivenby y = x?+ b . This transformation represents 
a translation along the y-axis. 

For example, the graph of y = x2—2 represents 

the parabola y = x? translated 2 units down: 

  

Similarly, the graph of y = x2 + 1 represents the 

parabola y = x? translated 1 unit up: 

  

Note that this time, when applying a vertical translation, we 

are consistent with the sign of b! 

The reason is that, although we are sketching the graph 
of y = fix)+b, we are in fact sketching the graph of 
y—b = flx). So that this time, the transformation is applied 

to the y-values, and not the graph! 

So, if we consider the two previous examples, we have 

y=x*-2&y+2 = x2, and so, in this case we would be 
pulling the y-axis UP 2 units, which gives the appearance that 
the parabola has been moved down 2 units.



  

‘That is, pulling the y-axis along “+2’ units 

(i.e. upwards), gives the appearance that 
the parabola has ‘moved’ down 2 units. 

WTy-*Z 

Up) 

x 

2 2 
B % B 
o2 

Yhy=x2-2 2 
(ory+2=2x%) = 

8 
'S 

g 
x 

2   
Similarly, y = x>+ 1 y—1 = x2, so that in this case we 

would be pulling the y-axis DOWN 1 unit, which gives the 
appearance that the parabola has been moved up 1 unit. 

That is, pulling the y-axis along ‘-1’ units 
(i.e. downwards), gives the appearance 
that the parabola has ‘moved’ up 1 unit. 

Y 

  

Pa
;,

y 
sd
ey
s 

yd
es

d 
e
w
B
i
O
 

  

TRANSFORMATIONS OF GRAPHS 

  

a 

The graph of y = flx)-3 
represents a translation 

along the y-axis of the 
graph of y = flx) by 3 
units in the downward 

direction. 

  

b ©.5) 

The graph of y = f(x) +2 

represents a translation 

along the y-axis of the graph @Y N 
of y = fx) by 2 units in \ / 

the upward direction.   
  

Summary 

y=f(x-a), a > 0: translation of f(x) along the x-axis of a units 
to the right. 

y=flx+a) a > 0: translation of f(x) along the x-axis of a units 

to the left. 

y=flx)+b, b > 0: translation of f(x) along the y-axis of b units 

up. 

y=f(x)-b, b > 0: translation of f(x) along the y-axis of b units 

down. 

Of course it is also possible to apply both a vertical and 
horizontal translation to the one graph at the same time. That 
is, the graph of y = (x—1)2+ 2 would represent the graph of 
v = x2 after it had been translated one unit to the right and 

two units up. 

Such a combination takes the form f(x)— f(x—a)+6, 
representing a horizontal translation of ‘a’ along the x-axis 
and a vertical translation of ‘b’ along the y-axis. 

m
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The graph of y = flx-3)—~1 represents the graph of 
y = flx) after a translation along the x-axis of 3 units to the 

right followed by a translation along the y-axis of 1 unit down. 

1 

1y = fx) 
£ 3gnits y = fx-3)-1 

it 

J— 

Vector Notation 

  

  

The mapping from the original 
coordinates (x.») to the new J4b 
coordinates (x',)') can also be 

presented in vector form. That is, 

if the point (x,y) is translated ‘a’ 

units along the x-axis and ‘b units 
along the y-axis, the new coordinates would be given by 
(x+a,y+b). 

Y -6y 
===# , 

  

     

    

  

¥y 

Thatis, ¥ = x+a andy = y+b. 

The vector notation for such a translation is given by: 

()-6-6) 
Erom (;) - [;) * (Z) we then have: 

G- G)-Gl=C) -Gzt - #-mtrmsa 
Substituting these results into the equation y = flx) we 
obtain the transformed equation: 

V-b=fi¥x-a)=)y = fixX-a)+b 

As x' and )’ are only dummy variables, we can rewrite this 
last equation as y = fix—a)+b. 
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>
 Under the vector translation { ] , we have the mapping 

S(x)> flx—a)+b 

  

Let the new set of axes be u and v so that: 

(u) (X 3 u=x+3 x=u-3 (-1 v W) Ty =5 y =5 

Substituting these into » = x>~ 1, we have: 

v=5= (u-33-1=v = (u-3)3+4. 

However, u and v are dummy variables, and so we can rewrite 
the last equation in terms of x and y, i.e. y = (x=3)3+4. 

This represents the graph of y = x* translated 3 units to the 
right (along the x-axis) and 4 units up (along the y-axis). 

Notice that the original relation is in fact y = x3~1, so that 

relative to this graph, the graph of » = (x—3)3+4 has been 
translated 3 units to the right (along the x-axis) and 5 units 
up (along the y-axis). 

T e T N R e T 

Exercise 2.3.1 

1. Find the equation of the given relation under the 
translation indicated. 

o) s () 
c y=x2;(g) d x2+y=2;((z)) 

e x2+y=2;(g) 

2 Consider the graphs shown below. 

1 

  

In each case, sketch the graph of: 

i y=fix+2) i y=fx-1) 

iy =A0)-3 iv y=fn+1



TRANSFORMATIONS OF GRAPHS 

  

8 Using translations on the graph of f(x) = J/x , sketch 

the graphs of the following. 

a v =flx-4) b y =flx)-2 

€ y=flx-2)+3 

4. Using translations on the graph of f(x) = 1 , sketch 

the graphs of the following. . 

a ¥ =fix+1) b y=fix)-4 

c y=fix+2)-3 

5. Using translations on the graph of f(x) = Lz , sketch 

the graphs of the following. * 

a y=fn-1 b y=/x-1 

= =2 e y=2efx-3) 

6. On the same set of axes sketch the graphs of: 

a y=x2-4andy = (x—4)* 

b y=x*+5andy = (x+5)2 

c y=x2+2andy = x2-2 

2 
(X+%) and y = ( —%)Z 

5 Sketch the graphs of the following functions, making 
sure to include all axial intercepts and labelling the 
equations of asymptotes (where they exist). 

I d 5 

a y=(x=2)2+3 

b y=— 

= (x+2)>-8 o - 

f y=(x+3)2-9 

g y=Jx-2+2 

h y=Aa+x+2 

Extra questions 

  

Dilations 

Dilation from the x-axis 

Before we start our discussion it should be pointed out that 
other commonly used expressions for dilations from the 
x-axis are: dilation along the y-axis and dilation parallel to the 

y-axis — any one of these three expressions can be used when 

describing this dilation. 

The equation - can be written as fi = fix). 

‘We have rearranged the expression so that we can more 

clearly see the effects that p has on the y-values. That is, the 

term ’/, represents a transformation on the y-axis as opposed 
to a transformation on the graph of f{x). The effect of ‘p’ in the 
term ?/p is that of a dilation from the x-axis. 

If |p| > 1, we shrink the y-axis (seeing as we are dividing the 
y-values by a number larger than one). Whereas if 0< [p| < 1 

we stretch the y-axis. 

However, wesstill need to describe the effect this transformation 

has on the final appearance of the graph of f(x). 

‘We summarise these results, stating the effects on the graph 

of flx): 

  

A Sstretch’ of factor /5 is the same as a ‘shrink’ of factor 3. 

However, it is more common that when referring to a dilation 

from the x-axis, we refer to it as a stretch. So a dilation from 
the x-axis of factor 3 would imply a stretching effect whereas 
adilation from the x-axis of factor '/3 would imply a shrinking 
effect. 

The relationship between the original coordinates (x, y) and 

the new coordinates (x'. ') can be seen in the diagram below. 

  

Unlike  the  translation Y 4 \/\"here: 

vector discussed earlier, we oY) @ =x 

have no dilation vector to y=py 

describe this transformation 

[although there does exist a 

dilation matrix). 

== —txy 

  

I
 

1 

=     
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ay = 2f(x) represents a dilation of factor 2 from the x-axis. 

This means that the graph of y = f(x) would be stretched by 

a factor of two along the y-axis. 

b }/:%/’(,r) shows a dilation of factor '/, from the x-axis. 

This means that the graph of y = f(x) would shrink by a 

factor of four along the y-axis. 

1 
¢ 2y = f(x) needs to first be written as )':Ef(x). 

This represents a dilation of factor '/, from the x-axis. This 
means that the graph of y = f(x) would shrink by a factor of 
two along the y-axis. 

  

a The graph of y = 2f(x) 

represents a dilation of factor 2, 

i.e. the graph of y = f{x) will be 
stretched by a factor of 2. 

Notice how the x-intercepts are 

invariant, i.e. they have not altered 

after the transformation. This is 
because the y-value at these points 

is zero, and multiplying zero by 

any number will still be zero. 
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b3y = f) ey = 

This represents a dilation of factor /3, i.e. the graph of 
¥ = fix) will shrink by a factor of 3. 

Dilation from the y-axis 

The equation: | y= f[i] 
q 

represents a transformation applied to the x-values. We now 

need to consider how this factor ‘g’ affects the graph of f(x). 

The term */; represents a transformation on the x-values as 

opposed to a transformation on the graph of f(x). The effect of 

‘q in the term */, is that of a dilation from the y-axis. 

If lg| > 1, we shrink the x-axis (seeing as we are dividing the 
x-values by a number larger than one). Whereas if 0 < lgl <1 

we stretch the x-axis (because we are dividing by a number 

less than one but greater than zero). However, we still need 

to describe the effect this transformation has on the final 

appearance of the graph of f(x). 

We summarise these results, stating the effects on the graph 
of fix): 

For the curve with equation: 

) 
|g] > 1, represents ‘stretching’ f(x) by a factor g from the 
y-axis. 

0 < |g] < 1, represents ‘shrinking” f{x) by a factor L from 

the y-axis. 7 

So a dilation from the y-axis of factor 2 (eg 
vy = fix/2)) would imply a stretching effect whereas 

a dilation from the y-axis of factor '/, (e.g. ¥ = f(2x)) would 

imply a shrinking effect. We show this in the following 

diagram. 

  

Multiplying the x-values by 2, i.e. stretching the 

x-axis by a factor of 2 has the same effect as 
squashing the graph of y = f(x) by a factor of 2.



OF GRAPHS 

    

Notice that the y-intercept 
has not changed! 

Again, it must be remembered that the graph of 
y = f(x) has not changed, it is simply the illusion that 
the graph has been squashed. That is, relative to the 
new (stretched) x-axis, the graph of y = f(x) appears 
to have been squashed. 

The relationship between the 5 
original coordinates (x,y) ¢ 

  

=X 

and the new coordinates Where: ™ q 
(x,)") can be seen in the f—— l_> = 

diagram bel g ’ agram below. 3 i 
Ty) 765" 

Again, we have no dilation L X       

vector to describe this 

transformation (although there does exist a dilation matrix). 

  

a First express the dilation in 
the form y = fix/q): 

s fo), 
This means that we have a 
dilation from the y-axis of \ 
factor '/,. That is, the graph of G-1® 6-1)* 
v = fix) will ‘shrink’ (or rather be squashed) by a factor of 

2. Because the x-values are doubled (from the 2x term in the 

expression y = f(2x) ) it seems reasonable to deduce that on 

the new set of axes the graph will be squashed by a factor of 2. 

  

x 
The term 5 in the expression y = j(g) implies that the new 

x-values will be a third of the original x-values. This means 
that the new x-axis will be compressed by a factor of 3. This 
in turn will have a stretching effect on y = f{x) of factor 3 
(along the x-axis). 

  

  

Exercise 2.3.2 

1. On the same set of axes, sketch the graphs of: 

a  flx)=2x2,y=f(2x) 

b A = Vr,y = fan) 

< ao-tref) 
d /(x)=x3,y=f(§) 

2 On the same set of axes, sketch the graphs of: 

a o =a?,y=2Mx) 

b /) =,y =4 

¢ fm=1y=lw 

d flx)=x3,y°%flx) 

3 Consider the graphs shown below. 

a 

  15



In each case, sketch the graphs of: 

  

  

      

i » = 105x) i y = f2x) 

iy = 0.5/(x) iv » = 2flx) 

4. Consider the relations shown below. 

b 
ol e Ny 

\ - 
A\sj 3 3\ x Z7 -1 2 30X 

2 -1 
-2 

c & diag 1 
»=Ax) 
03) =L _ y=f) 

Q0 x Pre 
ey = 

Sketch the following. 

i y =J(§x) i ¥y = 4flx) 

Extra questions 

Reflections 

We first consider reflections about the x-axis and about the 
y-axis. The effects of reflecting a curve about these axes can 
be seen in the diagrams below: 

  

‘When reflecting about the x-axis we observe that the coordi- 
nates (x, ) are mapped to the coordinates (x, -y) meaning that 
the x-values remain the same but the y-values change sign. 

  

‘When reflecting about the y-axis we observe that the coordinates 
(x, ) are mapped to the coordinates (~x, y), meaning that the 
y-values remain the same but the x-values change sign. 

‘We summarise the effects of these two transformations of the 

graph of y = f(x) 
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Another type of reflection is the reflection about the line y = 
x, when sketching the inverse of a function. Inverse functions 

are dealt with in detail in Chapter 2,1, so here we give a 
summary of that result. 

Reflection about the liney =x 

When reflecting about the 
line y = x we observe that 

the coordinates (xy) are 

mapped to the coordinates 
(3x), meaning that the 
x-values and the y-values are 
interchanged. If a one-one 
function undergoes such a 
reflection, we call its transformed graph the inverse function 
and denote itby y=/"(x). 

    

a The graph of 

y=f=x) 
represents a 
reflection of the 
graph of 
¥ = fix) about Y/ 
the y-axis: 
   

b The graph 
of y = ~f(x) 
represents a 

reflection of 
the graph of 
» = fx) about 
the x-axis: 

  
‘We now consider a combination of the transformations we 

have looked at so far.



F GRAPHS BT STV INH o] 

  

We start by considering the function fix) = /¥ , then, the 
expression y = 3~ 2./4—x can be written in terms of fix) 

as follows: y = 3-2f(4-x) or y = —2fi4-x)+3 . This 

represents: 

1. reflection about the y-axis (due to the ‘-x’ term) 

2. translation of 4 units to the right (due to the 4 - x* 

term). Note: 4 —x = —(x—4) 

3. dilation of factor 2 along the y-axis (due to the 2/(x) 
term) 

4. reflection about the x-axis (due to the ‘- in front of the 

2f(x) term) 

5z translation of 3 units up (due to the “+3’ term) 

‘We produce the final graph in stages: 

   

     
    
   

1. reflection 
wc y-axis) 

y=ala 

v=dk 

2. translation, 

v / 

  

       

  
3; di% 

N 

0,4) 4. reflection 
(about x-axis) 

  

The previous example gave a step-by-step account of how to 

produce the final graph, however, there is no need to draw that 

many graphs to produce the final outcome. We can reduce the 
amount of work involved by including all the transformations 
on one set of axes and then produce the final graph on a new 

set of axes. 

  

If we consider the function f(x) =2, the graph of 
y=2-z(x+ 1)2 can be written as y = 2— =f(x+1).This 

represents a ‘shrinking’ effect of factor 2 from the x-axis 
followed by a reflection about the x-axis then a translation 
of 1 to the left and finally a translation of 2 units up. 

  

   

  

   

1 unit across, 

Reflection; 

about -axis’ o 

    

  

Final graph: 

y= Z—%(x+l)1 

At this stage we have not looked at the x- or y-intercepts, 
although these should always be determined. 

Important note! 

Note the order in which we have carried out the 
transformations - although there is some freedom in this - 
there are some transformations that must be carried out 

before others. 

You should try to alter the order in which the transformations 
in Example 2.3.10 have been carried out. For example, does it 

‘matter if we apply Step 2 before Step 17 Can Step 2 be carried 
out after Step 4?7 

17
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Exercise 2.3.3 3. Sketch the graphs of the following. 

1 Sketch the graphs of: a Slx) = =3x2+9 

i r=S g ¥ =) b =43 

for each of the following. c fix) =1- éx3 

2 b 
ol yesw "y d ) = -(x+2)2+3 

_\ ) 3 3\ X e Six) 
2 2 

-2 f ) 

¢ Y 5 
= s g flo=-(x-2)P-2 

(0.3) wvaeie = h fix) = 
(2.0) x 

R BPEy, SUE : i Sx) = 

j fx) = 

2 The diagram below shows the graph of the function k flx) = 

y=fx). 
1 flx) = 

m Sx) = 

4. The graph of y = f(x) is shown opposite. Use it to 
sketch the graphs of: 

Find the equation in terms of f{x) for each of the following 

graphs. a y=flx-1 

a b y=Mx-1 

c y=flx+1) d y=1-flx) 

e y=1+A-x) f y=2-f(-x) 

. g =W b y= e 

Extra questions 

  

Answers     
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The Rational Function 

Rational fuctions take the form: - 

Graphs of this nature possess two types of asymptotes, one 

vertical and the other horizontal. 

1.The vertical asymptote 

A vertical asymptote occurs when the denominator is zero, 

that is, where ¢x+d = 0. Where this occurs, we place 
a vertical line (usually dashed), indicating that the curve 

cannot cross this line under any circumstances. This must be 
the case, because the function is undefined for that value of x. 

For example, the function 

H3x +1 

2x+4 
  

is undefined for that value of x where 2 x + 4 = 0. That is, the 
function is undefined for x = -2. This means that we would 
need to draw a vertical asymptote at x = ~2. In this case, we 
say that the asymptote is defined by the equation x = -2. 

Using limiting arguments provides a more formal approach 

to ‘deriving’ the equation of the vertical asymptote. The 

argument is based along the following lines: 

-3x+1 
‘2x+4 

That is, as x tends to -2 from the | 
left or ‘below’, (hence the minus | 
sign next to the two) the function 

tends to positive infinity. o= 

  AN =2 

    

THER FuNcTIO 

3x+1 
a+a 
  asx—-27, — Foo 

That is, as x tends to -2 from the 
right or ‘above; (hence the plus 
sign next to the two) the function 

tends to negative infinity. Yios ‘ / 

  

Therefore we write: 

  

=-2 
As w2 fix) = °<'}15 a vemcal 

As x > -2 f(x)— +eo) asymptote 

of f(x )—3’“’1 -2, 

2.The horizontal asymptote 

To determine the equation of the horizontal asymptote, we 

use a limiting argument, however, this time we observe the 
behaviour of the function as x>zeo. 

It will be easier to determine the behaviour of the function 
(as x->+o0) if we first ‘simplify’ the rational function (using 
long division): 

  

Next we determine the behaviour for extreme values of x. 

3 Asx — +oo flx) = (§)~ Therefore, y = 5 

3.+ is the horizontal 
As X =~ fx) > (3) | asymptote 
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‘We can now add a few more features of the function: 

3. Axial intercepts 

x-intercept 

To determine the x-intercept(s) we need to solve for f{x) = 0. 

In this case we have: 
3x+1 = = 1= = 

fx) 5 0 3x+ 0= x 3   

That is, the curve passes through the point (,%’ O)A 

y-intercept 

To determine the y-intercept we find the value of f(0) (if it 

exists, for it could be that the line x = 0 is a vertical asymptote). 

In this case we have f{0) = ;::% = }‘ 

Therefore the curve passes through the point (0,'/4). 

Having determined the behaviour of the curve near its 

asymptotes (i.e. if the curve approaches the asymptotes from 
above or below) and the axial-intercept, all that remains is to 

find the stationary points (if any). 

  120 

   
The vertical asymptote is at x = 1. Just to the left of the 
asymptote (e.g. at x = -1.1) the numerator is negative and 

the denominator small and negative. The y value is large and 
positive. Just to the right of the asymptote (e.g. at x = - 0.9) 
the numerator is negative and the denominator small and 
positive. The y value is large and negative. 

The horizontal asymptote occurs when x is large. When this 
happens, y tends to -3. For a big negative x (e.g. x = ~100), 
y=""/, ie abitsmaller than -3 (above the asymptote). For 
abig positive x (e.g. x = 100), y =/ , i.e. abit bigger than -3 
(below the asymptote). 

Intercepts: 

1 
X intercept at 3x+1:0=>x:~§ 

3x0+1 
1-0 

‘The sketch should show all the important features: 

yinterceptat y= 1 

  

Modern graphic calculators will produce quite good plots 

of rational functions. They do not, however, show the key 
features which a good sketch must include. 

  

       



OTHER FUNCTIONS 

  

Exercise 2.4.1 

    

  

1. Use a limiting argument to determine the equations 

of the vertical and horizontal asymptotes for the 

following. 

2x+1 _3x+42 
a S(x)= i b /(%) AL 

2x-1 4-x x)= d x)=—= © flx) Tt f(x) P 

e f(;r)=3—£ f f(x):s—; 

2; Make use of a graphics calculator to verify your results 

from Question 1 by sketching the graph of the given 

functions. 

3. Sketch the following curves, clearly labelling all 
intercepts, stating the equations of all asymptotes, 

and, in each case, showing that there are no stationary 

  

points. 

3 b B x+l 

: 2r+1 r+2 
5-x 1 

¢ T d X 3+— 
2x-1 x 

2 
e x»—»L-—Z f rel-— 

x=3 2x-3 

4. The figure at below shows part of the graph of the 

function whose equation is: 

ax+2 
Togr— 

x=c 

Find the values of a 

and c. 

5. Given that fix »x+2 and that g:x HL , sketch 
x=1 

the graphs of: 

a fog b gof. 

Extra questions 

  

    

The Exponential Function 

The exponential function takes the form: 

where the independent variable is the exponent. 

Graphs witha > 1 

An example of an exponential function is /(x)=2",xeR 
So, how does the graph of /(.x)=2" compare with that of 
Sfla)=at? 

We know that the graph of /(.x)=x" represents a parabola 
with its vertex at the origin, and is symmetrical about the 
y-axis. To determine the properties of the exponential 
function we set up a table of values and use these values to 

sketch a graph of f(x)=2" 

[ [TefafefefeT.] 
S=2| a1 o 1]4 

  

  

      fa=2| ||| 1| 2] 4               

We can now plot both graphs on the same set of axes and 
compare their properties: 

    
     

For x> 0, flx) > gx). 

For x < 0, f(x) < g(x). 

Notice how different the graphs of the two functions are, even 

though their rules appear similar. The difference being that 
for the quadratic function, the variable x is the base, whereas 

for the exponential, the variable x is the power. 

Properties of f(x) = 2* 

The function increases for all values of x (i.e. as x increases so 

too do the values of y). 

The function is always positive (i.e. it lies above the x-axis). 

Asx — o then y —> o0 
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X — —oco then y — 0. i.e. the x-axis is an asymptote. 

When x>0 theny>1, 

x=0theny =1 

x<0 thenO<y<I. 

‘We can now investigate the exponential function for different 

bases. Consider the exponential functions fix) = 4* and 

g(x) = 3% From the graphs we can see that f(x) = 4* increases 
much faster than g(x) = 3* for x > 0. 

For example, at x = 1, f{1) = 4, g(1) = 3 and then, at x = 2, 

f2) = 16, g(2) = 9 . However, for x < 0 we have, flx) = 4* 
decreases faster than g(x) = 3*. 

Notice then that at x = 0, both graphs pass through the point 

(0, 1). 

From the graphs we can see that for values of x less than zero, 

the graph of f(x) = 4* lies below that of g(x) = 3*. Whereas for 

values of x greater than zero, then the graph of f{x) = 4* lies 

above that of g(x) = 3% 

Exponential functions that display these properties are 

referred to as exponential growth functions. 

     
     

For x> 0, (x) > g(x). 

For x <0, f(x) < g(x). 

What happens when0<a< 1?7 

‘We make use of a calculator to investigate such cases. Consider 
the case where a = %. 

Rather than using a table of values we provide a sketch of the 
curve. The graph shows that the function is decreasing - such 

exponential functions are referred to as exponential decay. 

In fact, from the second screen we can see that the graph of 
y = (%)"is a reflection of y = 2* about the y-axis. 

We note that the function y = (%)* can also be written as 

y=EYE=27 

122 

There are two ways to represent an exponential decay 
function, either as f{x) = a*, 0<a<l or fix) = a™, a>1. 

For example, the functions flx) = (%)‘ and g(x) = 47 are 
identical. 

‘We can summarize the exponential function as follows: 

  

    

    

a>1 
A 

Intercepts: 

Cuts y-axis at (0,1) 

Asymptote : y =0 
(or x-axis) 

\ Intercepts: 
Cuts y-axis at (0,1) 

Ra
ng
e:
R*
 

  

Asymptote: y =0 

(or x-axis)   
    

  

There also exists an important exponential function known as 

the natural exponential function. 

This function is such that the base has the special number ‘e’ 
The number ‘e} which we also consider in Chapter 1.2 has a 
value that is given by the expression: 

However, at this stage it suffices to realise that the number ‘¢’ 

is greater than one. This means that a function of the form 
fix) = e*will have the same properties as that of f(x) = a*for 
a>1l. 

That is, it will depict an exponential growth. Whereas the 

function f(x) = e will depict an exponential decay.



  

  

Using a calculator: 

  

(=% 

  

  

        
Notice that the principles of transformations discussed in 

the previous section (2.3) apply to exponential graphs. In 

Example 2.4.2 a we have a 'right one unit' translation and in b, 
a 'left two units' translation. 

Using a calculator: 

  

’/.,; -1 
  

            
  

  

Using a calculator: 

a 

Vertical stretch factor 3. 

    

   

  

NS e o 

      

   

  

Reflection in x-axis and dilation 

of % in the y direction. 

(1,2¢-2) 

Notice thatin both cases - ) 
the general shape of Whenx=0, 10) =2x¢’-2 =0. 
the exponential growth Whenx=1, (1) = 2xe! - 
remains unaltered. Only b 
the main features of the 

graph are of interest 

when  sketching s 

involved. 

  

When x = 0/(0)—2" ‘:%e‘. 

When x=1, f(1) = %elf‘ = %E’A 

(e e v R e Y R | 

Exercise 2.4.2 

1. On separate sets of axes, sketch the graphs of the 

following functions and determine the range of each 

function. 

a flx) =47 b flx) = 

¢ fl)=5" d flx) = (2.5) 

e =6 ¢ - sy 

e () 
N O R 

ko flx) = @)X 1 fix) = (0.7)° 

123 
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2. Sketch the following on the same set of axes, clearly 
labelling the y-intercept. 

f(x) = 3"+ cwhere ic=1 idic=-2 

flx) = 27+ ¢ where ic=0.5 iic=-05 

3. Sketch the following on the same set of axes, clearly 
labelling the y-intercept. 

fix) = bx3" where ib=2 iib=-2 

fix) = bx(%)xwhere ib=3 iib=-2 

4. On the same set of axes, sketch the following graphs. 

a flx) = 3% and flx) = 37° 

b fx) = 5% and flx) = 57 

c flx) = 10" and f(x) = 107" 

d = (LY wmasoo = (1) o - (1 e -3 
5. Find the range of the following functions. 

2% 
a f:00,4] »R,Y 

b f[13] oR,y = 3" 

c fi[-1.2] vR,y = 4 

2% 
d  fl-12]1 »R,» 

e fI23] »R,y =27 

£ fl-1,1] »R,y = 107 

6. Sketch the graphs of the following functions, stating 
their range. 

a f: Reopwhere f{x) = 2e*+1 

b f: R~Rwhere f(x) = 3—e*"! 

c f: ReRwhere f(x) = e—e™ 

d f: ReRwheref(x) = 2+ %e—x 

Extra questions 
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The Logarithmic Function 

The logarithmic function, with base ‘a’ is represented by 
the expression g(x) = log x, x>0. 

The logarithmic function is the inverse of the exponential 

function: 

1f f(x) = 2* then f(x) = log,x 

To determine the shape of its graph we start by constructing 
atable of values for the function f(x) =log xand comparing 
it with the table of values for f(x) = 2% 

  

  

            

  

  

From the table of values we observe that the x- and y-values 
have interchanged! Plotting these results on the same set of 
axes, we observe that the graph of the logarithmic function is 
a reflection of the exponential function about the line y = x. 

So, whereas for the exponential function, the asymptote is the 

x-axis (i.e. y = 0), for the logarithmic function, the asymptote 

is the y-axis (i.e. x=0). 

  

(3:-1)  The implied domain 
of the basic logarith- 
‘mic function is 0, e[ 
and the y-axis is its 
asymptote. 

So, how do the graphs of y = logx, y = log,.x, y = log,x 
compare to y = log x ? The best way to see this is to sketch 
the graphs on the same set of axes as the diagram on the 
following page shows: 

The implied domain of the basic logarithmic function with 
any positive base is ]0, oo[ and has the y-axis as its asymptote. 

Observe that each of the logarithmic functions is a reflection 

about the line y = x of its corresponding exponential function 

(of the same base).



    

    

   
3= lngzx,x>0 

¥ = logygx, x>0 (10,1)    

Notice that foralla > 0log 1 =0andloga=1. 

As is the case for the exponential functions, the base ‘¢’ 
also plays an important role when dealing with logarithmic 
functions. When using the number ‘¢’ as the base for the 
logarithmic function, we refer to it as the natural logarithmic 
function and can write it in one of two ways: 

fix) =log x, x>0 or flx) =Inx, x>0 

  

a 

A2 right' translation. 

Domain of f= (2, ). 

  

b 

Looking at the domain: 

2x+3>0@x>—%. 

Therefore, the implied 
domain of g =(_%, aa] S 

The vertical asymptote X = 
istx = 3¢ 

Video 
  

      

a The implied domain in this case is x > 0. So, the vertical 
asymptote has the equation 
x=0. 

‘We note that the negative 
sign in front of the log,x will 
have the effect of reversing (3,-2) 
the sign of the log x values. 

1,0 X 

That is, the graph of f(x) = -log.x is a reflection about the 
x-axis of the graph of y = log x. 

‘The factor of 2 will have the effect of ‘stretching’ the graph 
of y =log,x by a factor of 2 along the y-axis. 

Also, we have that f(1) = -2log,1 = 0 and f(3) = -2log,3 = -2. 

b This time the implied domain is ]0, eo[. 

Therefore, the equation of 
the asymptote is x = 0. The 

one third factor in front of 
log x will have the effect of 
‘shrinking’ the graph of y = 
log,x by a factor of 3. 

  

Then, f{1) = '/5log,1 =0 and 

fle)="1sloge="1s. 

e O S e | W S S| 

Again, we have the following observations: 

The graph of y = kxlog,x. k>0 is identical to y = log,x but 

i Stretched along the y-axis if k > 1. 

ii Shrunk along the y-axis if 0 <k < 1. 

‘The graph of y = kxlog,x, k<0 is identical to y = log,x but 

i Reflected about the x-axis and stretched along the 
y-axisifk < -1. 

il Reflected about the x-axis and shrunk along the 
y-axisif -1 <k <0. 
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2 Sketch the graph of the following functions, clearly 

stating domains and labelling asymptotes. 

a  flx) =2logx+3 b fix) = 10-2log ox 

¢ hx) =2log2(x—1) 

) 

  

a The effect of adding 3 to the graph of y = logyx will result in e fix) = logy(3x+2) -1 

g(x) = logyx+3  being )    moved up 3 units. (2,4) y=e® f h(x) = 3log2(%x— 1)+ 1 

Its implied domain is _ -Gy 7= log,x 3 Sketch the graph of the following functions, clearly 
(0, e) and its asymptote | stating domains and labelling asymptotes. 
has equation x = 0. / 

/ a fix) = 2Inx b 2(x) = -5Inx 
b The effect of 

subtracting 2 from the c fix) = In(x—e) d fix) = In(1-ex) 
graph of y = logyx will 

resultin g(x) = logyx—2 e fix) = 5-Inx f h(x) = Inx—e 
being moved down 
2 units. Its implied 

domain is (0, o) and its 

asymptote has equation 

4. Sketch the graph of the following functions, clearly 
stating domains and labelling asymptotes.   

  

%=1, a f) = logax b fix) = logyo? 

¢ As we cannot have the c h(x) = Inj d gx) = ln()‘—() 

logarithm of a negative 
number we must have e h(x) = In(1-x2) f fix) = logy(x2-4) 

that 3-x>0e&x<3. 

5: Sketch the graph of the following functions, clearly 

stating domains and labelling asymptotes. 

  

This means that the vertical asymptote is given by x = 3 and a fix) = |log x| 
the graph must be drawn to the left of the asymptote. 

b £(x) = [log,(x— 1) 
S i P S SRR P 

c h(x) = |Inx—1| d h(x) = 2—|Inx| 
Exercise 2.4.3 

e Sx) = logylx+2[  f 
1. Sketch the graph of the following functions, clearly 

stating domains and labelling asymptotes. 

a Ax) = logy(x=2) b fix) = logy(x+3) Extra questions 

c h(x) = log;+2  d 8(x) = =3+ logyx 

e fix) = logs(2x—1) h(x) = logy(2-x) 

g 8(x) = 2log;px h flx) = —logox+ 1 

Answers   126



   
2.5 Polyno 

his chapter will deal with three important results and 
the ways in which they can help us sketch the graphs of 

polynomials. 

Polynomials are functions of the form: 

Remainder Theorem 

If a polynomial P(x) is divided by a linear polynomial (x - a), 

the remainder is P(a). 

In general: dividend = divisor xquotient + remainder 

Factor Theorem 

If, when a polynomial P(x) is divided by a linear polynomial 

(x - a), the remainder P(a) is zero, then (x - a) is a factor of 

P(x). 

Fundamental Theorem of Algebra 

Every polynomial equation of the form P(z) = 0, z € C, of 

degree 1 e Q" has at least one complex root. 

This has the important result that: 

A polynomial P (2) = 0, z ¢ C, of degree n ¢ Q, can be 
expressed as the product of n linear factors and, hence, 

produce exactly n solutions to the equation P (z) = 0. 

This does not, however, mean that, for example, all cubic 

equations have three real solutions. 

The truth of these matters can best be understood by looking 

NOMIALS 

   

at the graphs of polynomials. A good way to do this is with a 
graphic calculator. 

Polynomial Graphs 

The basic shapes can be investigated using a graphic calculator. 

Linear functions in which the highest power is 1 are straight 

lines. 

Power 2 polynomials are called quadratics. Their graphs are 
parabolas. These may or may not intersect the x-axis. 

  

   
  

2)=x2-2:x+2 

10 \1/(/1 (J=x?-2 xvl} 

~6.67 

Note that all the principles of graph translation apply to 

polynomials. 

  

      
If the squared term is negative, the parabola will be 'inverted'. 
  

6678y 

/\ f1l)=x?-2x53 
' 

e         
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PTER 

  

Power 3 polynomials are called cubics. 

6.67 

£1()=x> 2 -2 x43 

  

  

The extra power has added an extra 'hump' - a maximum or 

minimum. It seems likely that a power 4 polynomial will have 

three 'humps’ - and this is often true: 

     

  

11(0)=x42 x>-7 x2-8 x+ 

  

5.09 .2     a 415 
  

There are, however, cases in which a maximum and minimum 
can coalesce to form a 'point of inflection’. At such points, the 
graph flattens out for a moment and then carries on in the 
same direction: 

11 

  

3 
f1()=xt+2- x>     -2.51 
  

In this case, a maximum and minimum have become an 

inflection point at the origin. 

With that qualification, it is possible to infer the general 

shape of the graph of a polynomial from the highest power 

(or degree) of the polynomial. 

The other key features are the axes intercepts. The y intercept 
can be found by evaluating P(0). 

The x-intercepts are harder as we need to solve P(x) = 0. 

This is usually approached by factorisation using the Factor 

Theorem. 
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Factorising Polynomials 

Sometimes we can 'get lucky' with a polynomial and can see 

how to factorise it. 

  

‘The polynomial is cubic. If x>eo, y>+co. 

‘Thus, with the qualifications mentioned, we /\/ DV 

might expect the shape at right. 

x=0, y=0implies the graph passes through the origin. 

The other x-intercepts must be found by solving y = 0. 

or X’ —x’=2x=0. 

Since x is a common factor, an immediate factorisation is 

possible: x(x?—x-2)=0 

The quadratic will factorise using the inspection method: 

x(x+1)(x-2)=0 

Now we use the 'null factor rule' to solve: 

We already have x = 0 

x+1=0=x=-landx-2=0=x=2. 

These features can now be added to a preliminary sketch: 

f 

-10) {00 @0 

which gives: 

  
 



  

If the factorisation is not immediately obvious we use the 

Factor Theorem. 

This works very like the factorisation of numbers. Suppose we 

were asked to factorise 1262 We might begin by noticing that 
the number is even and so 2 is a factor. Once that is discovered 
there is a second factor that can be found by the division 
126+2. Many people will do this in their head. However, we 

will review the process of division as its algebraic version 

follows an identical pattern. 

‘The common layout for a division of numbers is: 

2|126 

Unlike the other three arithmetic processes (which move 

from right to left or from small numbers to large), division 

works from the large numbers to the small, or left to right. 

This is because division is sharing. If this problem was to 
share $126 between 2 people, we would probably begin by 

sharing the hundred dollar notes out first - which we cannot 
do as there is not enough money. Next we view it as 12 $10 

notes - so each person gets $60. This leaves $6 to share giving 
the answer as $63. 

This is usually written as: 

0 
. 2[126 Divide 1 by 2 (=0). 

. 0 Multiply the dividend (0) 
2 (1) 26 by the divisor (2) to get 0. 

0 
. 2[T3g Subtract (1-0=1) to get 

the remainder 1. 

T 

. 0 Include the next column 
2 (1) % 6 tothe right - “bring down”. 

12 
REPEAT the 4 processes. 

06 
. 2 (l)% 6  Divide 12 by 2 (=6). 

12 

06 
2[126  Multiply the dividend (6) 

0y by the divisor (2) to get 12. 

12 
12 

06 

. 2(126 Subtract (12-12=0) to get 
0y the remainder 0. 
12 

12 
0 

o . 2[126 Include the next column 

oy to the right - “bring down. 
12 
12 

06 REPEAT these processes. 

. 063 

212:6 
0y Divide 6 by 2 (=3). 
12 
12 

06 

063 
. 2126 Multiply the dividend (3) 

0y by the divisor (2) to get 6. 

12 
12 

06 
6 

. 063 

20126 Subtract (6-6=0) to get 

oy the remainder 0. 
12 
12 
06 There are no numbers left. 

6 ‘The process is complete. 
0 ‘The answer is 63 remainder 0 

‘We have shown this process in detail because keeping it in 
mind can help when working through a polynomial division. 
The technique is the same except it is performed with algebra 

instead of arithmetic. 

  

There is no obvious common factor, so we use the Factor 

‘Theorem. 
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Let: P(x)=x"-3x"-10x+24 

First, we look for a zero: 

P(1)=1"-3x1"-10x1+24#0 

P(-1)=(=1)' =3x(=1)' =10x(~1)+24 %0 

P(2)=2"-3x22~10x2+24%0 
=8-12-20+24 

=0 

By the Factor Theorem, x - 2 is a factor of P(x). 

The other factor can be found by division: P(x) + (x - 2). 

. %2 Divide x* by x (=x?). 

x—=2|x'=3x*=10x+24 Onlylookat the 
highest powers. 

Multiply the dividend 

x=2 x 3;{ —10x+24 (x?) by the divisor 
(x-2) to get x*- 2x2 

. X Subtract 

x -2 | ' =3x - 10x+24 (¥7-307-(x'-2x%)=-x7) 
x3-2x2 to get the remainder-x2 

“x? Take care with signs! 

. x2 

* 
223 —10x+24 I:‘;!:j:jt:i next column 

w2 | . 
%% 10 

  

- “bring down”. 

x1- x 

x=2 x'—3x2—1¢0x+24 
X2t Divide —x? by x (= -x). 

-x*-10x 

® - - 
2| & e ~l0xt2 Multiply the dividend 3_gp? 

" __;1_ ltx (~x) by the divisor 
X+ 2x (x-2)to get -x’+ 2x. 

. ¥= % 

x=2| ¥ =3x"=10x+24 Subtract 

  

x'-2x? (=x2-10x—(-x*+2x) 

"“"10"' =-12x) to get the 

4 2 remainder -12x. 
~12x 

. X % 

gt 
E-fla 2= l¢0x+24 Include the next column P 

£ ,—;u 10% to the right 
<giy Ox - “bring down”. 

-12x +24 
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REPEAT the 4 processes. 

A= > 

. &~ x =12 

=2 | 2" =3x7-10x+24 
x=2x? 

-x*-10x 
-x’+ 2x 

—12x+24 

. x?- x-12 

x=2 |2t =37 —10x+24 

vz Multiply the dividend 
~x2-10x (~12) by the divisor 
—x%+ 2x 
e (x-2)toget-12x+ 24, 

-12x+24 

. x2- x ~12 

x=2 | x' =327 -10x+24 

REPEAT these processes. 

Divide —12x by x (= -12). 

  

-2 | Subtract 
“xi- 10x (~12x+24-(~12x+24)=0) 

2x to get the remainder 0. 

-12x+24 
-12x+24 

0 

This means that: P(x):()r~2)(,v2 —x—12) 

‘The quadratic factor can now be factorised as a trinomial: 

P(x)=(x=2)(x+3)(x—4) 

We can now set about sketching the graph of: 

p=x"=32"-10x+24 

Ifx=0,y=24. 

Ify=0, +'=3x"-10x+24=0 

(x=2)(x+3)(x—4)=0 

x¥=2=0=x=2 

xX+3=0=>x=-3 

x—4=0=>x=4 

‘We now have all the intercepts: (0,24), (-3,0), (2,0) & (4,0) 

Once these four points are on the graph, and with the general 

shape of the cubic in mind, the sketch can be completed. 

] B 
An alternative method (synthetic division) 13_ 

is discussed at: 

    

  

What follows is a computer derived plot. 

Note that the 'humps' are not symmetric.



  

  

    

Using the Factor Theorem: 2(1)=1'-2x1’~5x1+6 

=1-2-5+6 

=0 

By the Factor Theorem, x - 1 is a factor of P(x). The other 

factor can be found by division: P(x) + (x - 1). The required 

division should look like this: 

xt-x -6 

x-1|2"-24"-5x+6 
xj—i i 

—x?% - 5x 
=X+ x 

-6x+6 
—6x+6 

0 

So: P(x)=x"—24"-5x+6 

=(x-1)(x"-x-6) 

=(x-1)(x=3)(x+2) 

This gives intercepts of: (0,6), (-2,0), (1,0) & (3,0). 

  

  

Repeated Factors 

‘We have a further complication when trying to link the 

degree of a polynomial with the number of zeros (solutions 
of P (x) = 0 and hence the number of intercepts on the graph 
of y = P(x). 

This is illustrated by the graph of y = (x - 1). This should have 
two intercepts as it is of degree 2. However, this is not the case. 

As using a graphic calculator is a good way of understanding 
this issue, we will use screen grabs in this section. 

  

11(x)=(c-1)? 

ext. % 
1 

        

There is an intercept at (1,0), but it is a 'toucher’. The graph 

touches, but does not cut, the x-axis. 

‘What if the power of the repeated factor is 37 

      116)=(-1)* 

  
217 / 1 38! 

        
This time, the intercept is an inflection point and an intercept 

all in one. It is a good idea to use a calculator to see what 
happens if the factor is repeated even more times. 

The even powers give touching intercepts with the graph 
getting flatter the higher the power. 

The odd powers give inflection intercepts with the graph 
getting flatter the higher the power. 

With a Casio model, use the Dyna Graph Module (6). 

E.g. ploty=(x-1)" 
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y=(x+1) (x=1)'(x-3) 

The red term (repeated twice) gives a touching intercept at 

(-1,0). 

The green term (repeated three times) gives an inflection 

intercept at (1,0). 

The blue term (one only) gives a cutting intercept at (3,0). 

The y-intercept (x = 0) is (0,3). If x>eo, y>+eo. 

Y 
3 

  

The actual graph is: 
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Rational Root Theorem 

When given a higher degree polynomial, it is not always 

easy to find the first zero to begin factorisation. Instead of 
randomly selecting a value from the real number system, you 

can consider using the Rational Root Theorem to identify a 

subset of potential zeros for the given polynomial. 

The Rational Root Theorem states that if 

f(x)=ax"+a, 2" +. +ax’ +ax' +a, = 

is a polynomial of degree 1, then the subset of potential zeros 
of this given polynomial is 2 \where pis thelist of the integer 

7 

factors of a, and ¢ is the list of factors of a. 

  

a,=-12s0 the list of factors p is: {+1,+2,+3,+4,46,£12} . 

a, =150 the list of factors q is: {£1}. 

1,2,3,4,6,12 
Hence, the list of potential rational roots is + 5 

This will cut down the amount of 'trial and error involved in 

using the Factor Theorem. 

The other way of doing that is to use a calculatore to draw the 
graph: 

  

  

Y4: E==1 
Y5: [—1 
Y6 [=—1] 
| DELETE] TYPE J TOOL     
  

Always remember that you may need to adjust the viewing 

window. Don't sit looking at your calculator wondering why 

it "isn't working" when all that has happened is that the graph 

is off the screen!



  

  

  

    
  

This suggests that -2 is an intercept and hence (x + 2) is a 

factor of the polynomial. 

If necessary, use G-Solve, or Analyse Graph etc. to identify 

the roots more precisely: 

  

[E [EXE]:Show coordinates 
YI=x"(@)=8x XT+A0x-12 

  

  

  

  

[EXE].Show coordinates 
—8x W-‘SEZ'FIOZ'_I? 

    
  

  

Theory of Knowledge 

Itis not very often that mathematics texts get to recount a tale 
of passion and revenge. 

However, the search for the solutions of polynomial equations 
is such an opportunity and we are not going to pass it up. 

The solution of polynomial equations started with linear and 

quadratic equations which were 'cracked’ quite early on in the 

History of Mathematics. 

However, cubics and higher orders presented a much tougher 

set of problems. 

Some progress had been made in China by Wang Xiaotong 

in the 7th century and by the Persian poet and scholar Omar 

Khayyam (1048-1131), both of whom solved a few cubic 

equations. 

‘The solution to the general cubic, however, remained elusive. 

In Bologna at the beginning of the 16th Century, it had 
become fashionable for the Universtity to stage problem 
solving competitions. These were a popular ‘spectator sport' 

and drew large crowds. 

Two  mathematicians, 

Antonio  Fiore  and 

Niccolo Tartaglia 
(pictured) claimed 

success with the cubic. 

  

The gauntlet was thrown down and a showdown was arranged 
in which cubic equations were to be solved against the clock. 
Tartaglia won. 

At this point, a third 

player, Gerolamo 
Cardano  (pictured) 

entered the fray.   133
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Cardano succeeded in persuading Tartaglia to tell him his £ P(x) = 3x3—6x2+6x—12 

secret. Tartaglia agreed on the condition that Cardano was 
not to reveal the method to anyone. 3. Sketch the graphs of: 

However, Cardano shared the secret with a student Lodovico a) P(x) = x3—kx wherei k = b? ii k= -b2. 
Ferrari with the result that they extended the method to the 

general solution of the quartic. b P(x) = x>~ kx? wherei k = b% ii k = -b2. 

What followed was one of the bitterest disputes in the History 
of Mathematics. 

4. Determine the equations of the following cubic 
You can read more about these two colourful individuals at: functions: 

y 

2 

and 

  

        Y 

X 

\(3. -10) 

Exercise 2.5.1 y 
(1,8) 

1. Sketch the graphs of the following polynomials: & 

pA 

a P(x) = x(x=2)(x+2)   
b PO = (- Dx-3)(x+2) 

c T(x) = 2x—1)(x-2)(x+1) 

4 pw = (Erarae-n 
Extra questions 

e P(x) = (x-2)(3-x)(3x+1) 

  

f T(x) = (1-3x)(2-x)(2x +1) 

2. Sketch the graph of the following polynomials: 

a P(x) = x3—4x2—x+4 
Answers 

b P(x) = x3—-6x2+8x 

  

c P(x) = 6x3+19x2+x—-6 

d P(x) = —x3+12x+ 16 

e P(x) = x*-5x2+4 
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Quadratic Equation 

quadratic equation in the variable x (say) takes on the 

form where a, b and c are real constants. 

The equation is a quadratic because x is raised to the power 
of two. 

The solution(s) to such equations can be obtained in one of 

two ways. 

Method 1:Factorise the quadratic and use the Null Factor 

Law. 

Method 2:Use the quadratic formula. 

Method 1: Factorisation and the Null Factor Law 

First of all we must have one side of the equation as 0, 

otherwise the Null Factor Law cannot be used. Next, when 

factorizing the quadratic, you will need to rely on your ability 
to recognise the form of the quadratic and hence which 
approach to use. A summary of the factorisation process for 

quadratics is shown below: 

1 Trial and error:(x + a)(x + B) 
eg X’ +12x+32=(x+4)(x +8) 

2. Perfect square:(x + a)* or (x - a)? 

eg. X+ 6x+9=(x+3)? 

3: Difference of two squares: (x + a)(x - a) 

eg. X’ 16x=(x+4)(x-4) 

Note that sometimes you might need to use a perfect square 
approach on part of the quadratic and then complete the 

factorisation process by using the difference of two squares.   

In this instance it is not obvious what the factors are and so 
trial and error is not appropriate. However, we notice that x* 
+ 6x + 7 can be broken up into x* + 6x + 9 - 2. 

‘That is, part of the quadratic has been expressed as a perfect 

square, so that x* + 6x +9 -2 = (x +3)* - 2. 

Then, we are left with a difference of perfect squares: 

(r+3)~2=(x+3+42)(x+3-42). 

2 4+6x+7=0 

(r+3+42)(x+3-12)=0 

-3+42 
(TR ST T B ¥ R el e b T TRTRE 

Therefore: 

  

Method 2 Quadratic Formula and the 
Discriminant 

A formula that allows us to solve any quadratic equation 
ax2+ bx + ¢ = 0 (if real solutions exist), is given by 

Obtaining solutions requires that we make the appropriate 

substitution for a, band c. 

135



CHAPTER 2 

  

a For the equation, we have a = 1, b= -1 and ¢ = -4, 

e —b+NG —dac 
2a 

_li\/(—l)z—4x1x—4 
B 2x1 

1£J17 
2 
  

b Similarly, if 2x2 = 4—x, then, 2x2+x—4 = 0 so that 
a=2,b=1and c=-4,so that 

—b+N\b —dac 
2a 

—12 (1) —ax2x—4 
2x2 

The Discriminant 

Closer inspection of this formula indicates that much 
can be deduced from the term under the square root sign, 
ie. b2—4ac. The expression b>—4ac is known as the 
discriminant and is often represented by the delta symbol 

In particular, there are three cases to address: 

Case 1. b —4ac >0 

—btab?— 
In this case, the expression x = bilz’—am 
real solutions 

produces two 

Taking the square root of a positive number will produce 
another positive real number. This implies that there will be 
one solution corresponding to the ‘+” term and one solution 
corresponding to the -’ term. 

That is, say that 4/b2—4ac = K, where K is a real number. 

+K 
2a 

  

  ‘We then have that x = sLeimy = iy = 

  

giving two distinct real solutions. 
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Case 2. b2 —4ac =0 

—bA/b? —4ac 
In this case, the expression x = % 

one real solution. 
produces only 

This is because taking the square root of zero gives zero. This 
in turn implies that there will be only one solution because 
adding and subtracting 0’ to the ‘~b’ term in the numerator 
will not alter the answer. 

Thatis,if /b2 —4ac = 0,wethenhavethatx = —_lzz:_() = —% 

meaning that we have only one real solution (or two 

repeated solutions). 

Case 3. b2 —4ac <0 

—btAlb? — dac 
In this case, the expression x = F 

real solution. 
produces no 

This is because the square root of a negative number will not 
produce a real number. This in turn implies that the formula 
cannot be utilized (if we are dealing with quadratic equations 
under the real numbers). 

There are, however, two complex solutions. 

  

a For one real solution to exist, we must have that 
A = b2—4dac =0. 

For this quadratic we have that @ = 2, b= m and ¢ = 1. 
Therefore, we need that m2—4x2x 1 = 0 

om-8=10 

& (m—B)(m+.8) = 0 
am=220rm=-2J2 

b For 2 real solutions, we must have A = b2 —4ac > 0. 

For this quadratic we have thata = 1, b=4and ¢ = k. Therefore, 
we need that 42— 4 x 1 x k>0 

©16-4k>0 ©16>4k <4>k.
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i.e. the quadratic x? + 4x + k = 0 will have two real solutions 
aslongas k < 4. 

  

a First we find an expression for the discriminant 

in terms of k. Using the values @ = 1, b = k + 3 and 
¢=k+ 6, we have: 

A = b2—dac = (k+3)2-4x1x(k+6) 

k2+2k-15 

(k+5)(k-3) 

For the equation to have 1 solution, the discriminant, A = 0 

thus, 

(k+5)(k=3) =0&k=-5 or k=3 

That s, the solution set is {k: k = -5, 3}. 

b For the equation to have 2 solutions, the discriminant, 

A>0,thus, (k+5)(k—=3)>0& k<5 or k>3. 

Using a sign diagram for k%:r— * 

That is, the solution set is {k : k<-5} U {k: k>3}. 

  

c For the equation to have no real solutions, the 
discriminant, A <0, thus, 

(k+5)(k-3)<0&-5<k<3 

Using a sign diagram for k: Hfi‘ 

That is, the solution set is {k: -5 <k<3}. 

e i o S S 

Graphical Interpretation 

If A=b2-4ac>0, then 

there are two x-intercepts. 
a>0 

A>0 

If A =bh2-4ac =0, then 
there is one x-intercept. 

  

a>0, 
If A = b2—4ac <0, then there 

are no x-intercepts. 
—_— 

X 

A<0O 
a<0 

Exercise 2.6.1 

L By using a factorisation process, solve for x: 

a x2+10x+25 =0 

b x2-10x+24 =0 

c 3x24+9x = 0 

d  x2-4x+3=0 

2. Without using the quadratic formula, solve for the 
given variable. 

a u+l=_o b x+2=3 
u ¥ 

¢ meB=f a4 Lo 

e y+1l= }%} f v+%) = 

3. By completing the square, solve for the given variable. 

a x2+2x =5 b x2+4 = 6x 

c x-2x=4 d 4x24x =2 

e 2y2 = 9y—1 f 3a2-a =7 

4. Use the quadratic formula to solve these equations. 

a x2-3x-7=0 b x2-5x=2 

c x2-3x-6=0 d x2=Tx+2 
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e x(x+7)=4 f 2+2x-8=0 

g x24+2x-7=0 h x2+5x-7=0 

5. For what value(s) of p does the equation 
x2+px+1 = 0 have: 

a no real solutions? 

b one real solution? 

& two real solutions? 

6. Find the values of m for which the quadratic 
x2+2x+m = 0 has: 

a one real solution. 

b two real solutions. 

< no real solutions. 

7. Find the values of m for which the quadratic 
x2+mx+2 = 0 has: 

a one real solution. 

b two real solutions. 

c no real solutions. 

8. Find the values of k for which the quadratic 
2x2+kx+9 = 0 has: 

a one real solution. 

b two real solutions. 

c no real solutions. 

9 Consider the equation x2+2x = 7. Prove that this 

equation has two real roots. 

10.  Find the value(s) of p such that the equation 

px2—px+1 = 0 has exactly one real root. 

11.  Prove that the equation kx>+3x = k has two real 
solutions for all non-zero real values of k. 

Extra questions 
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Sum and Product of the Roots of 

a Quadratic Equation 
The quadratic equation ax’ + bx + ¢ = 0 can be rearranged to 

Sibrie g, 
a a 

Note that the case a = 0 can be discounted as it refers to a 

linear equation. 

Assume that the equation factorises to (x—0)(x—B) = 0. 

We can then use the null factor rule to identify the roots of 
the equation as a and f. 

Expanding (x— o) (x - B) = 0 gives Ko (atBx+ap =0, 

If this is to be identical to the original equation, then the 

coefficients of each term must be equal. 

Original equation: 2abic oy 
a a 

New version: xz_(a_+ Bx+op =0 

The coefficients of x* are both 1 and so are equal. 

Py =2 a The coefficients of x: 

which implies: (a + ) - ‘the sum of the roots’ = ,g 

The constants:  ap - ‘the product of the roots’ 

  

1t is thus possible to make statements about the roots of 
quadratic equations without actually solving them. This 
includes situations in which the equation does not have real 

roots (b? < 4ac). 

  

a Using the sum of the roots = J;’ and the product of the 
roots = 5 : 

Sum of the roots = —22‘3 = 

Product of the roots = _% =-6



  

7 - 4109 b One of the roots is ’T 

If the second root is B, then, using the sum of the roots: 

    

o7 74109 14 —7+./109 
010 10 

  

Note that this confirms what might have been expected from 

the quadratic formula. 

Exercise 2.6.2 

1 Find the sum and product of the roots of each of these 
equations. 

2 
a X' +2x+4 =0 

b A-3x-7=0 

  

=3x=3 =0 

d 5 -7x+3=0 

e 20 +5x-3=0 

£ —ox+ax+2=10 

g 3 = 7x—4 

h 5% 4+8x=13 

  

i dxtl o, 
4x-1 

2. Given one of the roots of each of these equations, find 

the other. 

2 
a x'=5x+6=0,0=2 

b 0,0=1 

2 
c X" =7x+3=0,00=3 

d 6’ +x-1=0,g=1 
3 

e 9 +12x =5, =1 
3 

f 1087427 = 33x,0 = 

Extra questions 

  

Indicial Equations 
1 

Solving equations of the form x? = 3, where the variable is 
the base, requires that we square both sides of the equation 
so that: 

52 

(le =3=x=9 

However, when the variable is the power and not the base we 

need to take a different approach. 

Consider the case where we wish to solve for x given 

that 2¥ = 8. In this case we need to think of a value of x 

so that when 2 is raised to the power of x the answer is 8. 

Using trial and error, it is not too difficult to arrive at x = 3 

(22=2x2x2=8). 

Next consider the equation 3¥*! = 27. Again, we need to 
find a number such that when 3 is raised to that number, the 

answer is 27. Here we have that 27 = 33. Therefore we can 
rewrite the equation as 37" 1 = 33, 

As the base on both sides of the equality is the same we can 

then equate the powers, that is: 

3r+1 = 27 ey 3u+1 = 33 

©x+l =3 

©x =2 

This can be solved graphically by plotting y=3**" and y=27. 
Then use Analyse Graph / Intersection. 

  

  

   
     

11 

305 1y 

£2(x)=27 (2,27) 

x 
£1()=2"+1 

e T g 7e S   
  

or with Casio: 

[EXE]:Show coordinates 
YI=3"(x+ 199 
Y2=27 

  

  

   

    1 

  

  NTSECK 
q —] 

k=2 T 0 Ty=27 3       
139



CHAPTER 

  

i.e. solution set is {4}. 

N e LR 0 T SR 

1. Solve the following equations: 

  

a 3% = 813 =34 
a {x] 4 =16} 

b 2% 54 = 250 ¢ 5% = 125 -1 
esu =53 b {Xl 7"=4—9} 

cre ¢ {x 8 -4} 
¢ gedaare L 

2 2 d  {x]3¥=243} 

27 =27 
ox =5 e {x| 3*-2=81} 

1 4= f {x| 32} 

g {x| 3%-4=1} 

h {x| 42¥*1 =128} 

i {x| 27¥ =3} 

2. Solve the following equations. 

a {xl 7X+fi = 1} 

x 
a (1) 162 = 16 { 

2 b wee=l 

@2r =2t 
ey =4 ¢ {x| 10* = 0.001} 

©x =4 
d  {x|9v=27} 

i.e. solution set is {-4}. 
e {xl 241 =1} 

b 3+l = 3 By 38+l = 35312 

£ dxl 25t =) o 3vtl = 332 

3 SO 
©xt+l == x| 16 ~—} 

T ¢ { 7 
@=L h {x| 4% =322} 

2 

i x| 9 =243} 
i.e. solution set is {0.5} 

c 4571 = 64 (221 = 26 
222 =26 Answers 

©2x-2=6 

©2x =8 

ox=4 
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Linear Inequations 

Inequations are solved in the same way as equations, with 

the exception that, when both sides are multiplied or 
divided by a negative number, the direction of the inequality 

sign reverses. 

a xtl<d4eox<3. 

Therefore, the solution set (s.s.) is {x : x<3}. 

b 2x-5<1e2x<6 

ex<3 

Therefore, the solution set (s.s.) is {x : x<3}. 

a x+2>3-2x&3x+2>3 

€$X>1 < 3x>1 3 

1 
Therefore, s.5. = {x SRS 5} 

o142 < 115 
(multiply both sides by 14) 

3-2x . 4x-3 b I= 2 A=) 

©2(3-2x)<7(4x-3) 

©6-4x<28x-21 

=-32r<-27 

27 « 
© X235 (notice the reversal of the inequality - as we 

divided by a negative number) 

Therefore, s.s. is {x X2 g} 

  
  

Exercise 2.7.1 

T Solve the following inequalities. 

2  2xtl<x-3 b )%422,(,1 

c d x23(x+4) 

e £ 1-3x<5x-2 

2. Solve the following inequalities. 

a =L 23;" >3 b '%‘ + % <1 

o EaiEno 

141



CHAPTER 2 

  

8; Solve the following inequalities. 

a a(x+1)>2a,a<0 

b %‘+1>a,a>0 

c §+‘%<4;X*%,b>a>0 

d x+%2%~ax,a>0 

Extra questions 

Quadratic Inequalities 

Quadratic inequations arise from replacing the ‘=" sign in a 
quadratic by an inequality sign. Solving inequations can be 

carried out in two ways, either algebraically or graphically. 

Method 1:  Algebraic Method 

This method relies on factorizing the quadratic and then 
using the fact that, when two terms, a and b are multiplied, 
the following rules apply: 

ab>0<a>0andb>00ra<0and b<0OR 

ab<0<a>0andb<Oora<0Oandb<0 

  

a We start by factorizing the quadratic: 

x2—6x+8 = (x-2)(x-4) 

Then, X2~ 6x+8>0 (x—2)(x—4)>0 

Which means either: x-2>0and x-4>0,i.e.x>2and x> 4 
=x>4 -(1) 

orx-2<0andx-4<0,ie.x<2andx<4=x<2-(2) 

142   

Then, combining (1) and (2) we have {x| x2-6x+8>0} 
={x|x<2}u{x|x>4}. 

b Now, 2x2+5x-3<0 e (2x—1)(x+3)<0 . 

Meaning that either 2x-1<0andx+3<0,ie xs% 
andx<-3-(1) 

or2x-12> 0andx+32> O,i.e.xZ% andx>-3-(2) 

From result (1) we have that -3 <x < % 

However, the inequalities in result (2) are inconsistent, i.e. we 

cannot have that x is both greater than or equal to % and less 
than or equal to -3 simultaneously. Therefore we discard this 

inequality. 

Therefore, {x| 2x2+5x-3<0} = {x| —3gix= %} 

c This time we need some rearranging: 

2 -3<2reor?-2x-3<06 (x+1)(x-3)<0 

Then, we must have that x + 1 <0and x -3 >0,ie.x<-1 

andx>3 - (1) 

x+1>0andx-3<0,ie.x>-landx<3-(2) 

This time (1) is inconsistent, so we discard it and from (2) we 
have -1 <x<3. 

‘Therefore, {x}xz~3 <2x} = {x|-1<x<3} 

AT T e SR U SR | 

Method 2:  Graphical Method 

This method relies on examining the graph of the 
corresponding quadratic function and then: 

1. quoting the x-values that produce y-values that lie above 

(or on) the x-axis (i.e. y > 0 or y 20) 

or 

2. quoting x-values that produce y-values that lie below (or 
on) the x-axis (i.e. y <0 or y<0)    

    

¥ 

‘We consider inequations from Example 2.7.3 

a The corresponding function in 
this case is f(x) = x2-6x+8 .



  

‘That part of the graph corresponding to fix)>0 is 

highlighted in red. The values of x that correspond to these 

parts are x < 2 as well as x > 4. 

Therefore, s.5. = {x| x<2} U {x| x>4} 

b The corresponding function in this case is 
Slx) = 2x2+5x-3 . 

That part of the graph corresponding to f(x) <0 is highlighted 

in green. 

The values of x that correspond to these 

partsare -3 <x < Y5, 

Therefore, s.5. = {.\'\ -3< XS%} 

  

c This time we have two functions, A(x) = x2-3 and 

g(x) = 2x, and we want to find those values of x 

where f(x)<g(x) . 

We do this by sketching both graphson ;- 1) 
the same set of axes and then finding 
those values of x for which f{x) < g(x) 

i.e. where the graph of y = g(x) lies 

above that of y = f(x) . 

   
Once we have found the point of 
intersection, i.e. once we have solved 

flx) = g(x) , we refer to the graph. 
¥ = glx) 

fix) = gx) @x2-3 = 2xex?-2x-3 =0 

S E-3HE+1) =0 
©x=3orx = -1 

Then, f(x)<g(x) for-1<x<3. 
ie {x] x2-3<2x} = {x| -1<x<3}. 

The graphical method, particularly when allied to the use of 

technology can be used to solve a range of inequations. 

‘The screen that would solve part c above is: 

11 
218 fy 

  

            

Let g(x) = x| and f(x) = 2-x2+2x, we sketch these 
graphs on the same set of axes. 

  

  

214 2 \ 428 

£2(m2x242x     text 
. g 

Next we need to find where the two graphs intersect. That 

is, we need to solve the equation g(x) = f(x) . So, we have: 

| =2-x2+2x. 

  

Using the intersect option: 

  

   

    
11| 

64,0.562) 
214 2 \ 428 

2()=2-x%+2-x 
138 A 

We are looking for the interval(s) for which the red graph is 

above the blue graph. 

  

        
Therefore, from our results we have that: 

{x| Il <2 -x2+2x} = {x| -0.562 <x < 2}. 

Notice once again, that the graphics calculator could only 

provide an approximate answer for one of the points of 

intersection. 

Casio models use the Graph module followed by G-Solv. 
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[EXE]:Show coordinates 
" (x+1924Y 

¥2=27        

      — INTSECK 
=2 * 0 Ty=29 ¢ 4       

If (x—a)(x—54)=0, then the solution is x<z and x>4. 

If (x—a)(x—4)<0, then the solution is #<x<é. 

Exercise 2.7.2 

1. Find the solution set for each of the following 
inequalities. 

a (x=1)(x+2)>0 

b (x+3)(x-2)<0 

c x(4-x)<0 

d (1-3x)(x-3)>0 

e (B+2x)(x+1)20 

f (5-20)(3-4x)<0 

2. Find the solution set for each of the following 
inequalities. 

a x2+3x+2>0 

b x-x-6<0 

e x2+x-5<0 

f *x2+x+6<0 

g —x2+x+120 

h —2x2-3x+520 

i 2x2+5x-3>0 

j X 4x+3<0 
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k 22 +x-1<0 1 x2+3<0 

m -x2-2>0 n 2x2-7x<15 

o 3x2+5x>2 

3. a For what value(s) of k is the inequation 

X2+ 2kx —k >0 true for all values of x? 

b For what value(s) of k is the inequation x2 — kx +2> 0 

true for all values of x? 

c For what value(s) of 7 is the inequation x2+2x>2n 
true for all values of x? 

4, By sketching on the same set of axes, the graphs of 

the functions /(x) and g(x), solve the following 
inequalities: 

i fA=Em ii flx) 2 g(x) 

a fix) = x+2, g(x) = x2 

b Sx) = x=1,g(x) =22 —dx+5 

) =a+2,8() = 4x-1 

d ) =3x2-1,g(x) = x+1 

e =52, g00) =523 

f fx) = x2-3x-3,g(x) = x4 

5 On the same set of axes sketch the graphs of 

fix) =Ix=1| and g(x)=1-x2. Hence find 
{x:le—1l<1-x2}. 

  

6. Given that f{x) = x2+3x+2 and g(x) = 4-x2, 

find {x| fix)<g(0)}. 

7. Find {x: x> 4x| <k} for: 
i k=2 i k=4 iii k=8 

8. Find: 

i {x:|2x-3| <3x-x2} 

i {x:\3—|x||s|3 

  

Answers 

 



CHAPTER THREE 

CIRCULAR FUNCTIONS AND 

TRIGONOMETRY 

3.1 Angle Measure 
e g 

IN 66°32.010' 
|E 012°58.668'  



  

Our cover picture shows a modern GPS unit as it crosses 

the Arctic Circle - and the geographic marker that 

confirms it. It all depends on angles! 

Radian Measure of an Angle 

In Middle School Mathematics angles are measured in 
degrees. However, while this has been very useful, such 
measurementsare not suitable for many topics in mathematics. 
Instead, we introduce a new measure, called the radian 
measure. 

The degree measure of angle [ 
is based on dividing the |( 
complete circle into 360 
equal parts known as 

degrees. Each degree is 
divided into sixty smaller 

parts known as minutes, 
and each minute is divided | t——m—mm ] 

into sixty seconds. If using a calculator, you need to know 
how to set the calculator to radians or degrees. 

P o e T I can be converted into 

Oisplay Digts: 
angle: [Ragan_T, 

Exponenta Fomat,| 
Real or Complex: 
Catcutation Mode: 
Vector Fomat [Ractanaar 

7 [Restor| [t otau] [ox| [cancel 

  

q s d (2.456)rDMs 1400436 36414° 
egrees,  minutes  and |, sk || 

seconds using the book 108000 | i 
key (to the right of the 9, | 14 2456 | 
pressing D to scroll quickly |, 

to DMS and then selecting 

the function. The calculator : 
should be in degree mode. 

  
This can be useful as calculators generally produce answers 
in the decimal format. It should also be noted that the degree, 

minute, second angle system is the same as the hours minutes 
seconds system that we use to measure time. The above screen 
could be interpreted as 2.456° and is equal to 2 degrees 27 
minutes and 21.6 seconds or as 2.456 hours which is the same 
as 2 hours 27 minutes and 21.6 seconds. Note also that there 

is a difference between 'ENTER' and 'CTRL/ENTER'. 

The degree system is arbitrary in the sense that the decision 
was made (in the past and due to astronomical measurements) 
to divide the complete circle into 360 parts. The radian system 

is an example of a natural measurement system. 

  

‘Two radians is the angle that gives an arc length of twice the 

radius etc. giving a natural linear conversion between the 

measure of a radian, the arc length and the radius of a circle. 
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A complete circle has an arc length of 27tr. 

It follows that a complete circle corresponds to 271" =2 

radians. 

This leads to the conversion factor between these two systems: 

360° = 27 radians or 180° = 7 radians (often written as ‘). 

So, exactly how large is a radian? 

Using the conversion above, if 360° = 2n¢, then 1° = 

26—0=57.2957D 
2n 

That is, the angle which subtends an arc of length 1 unit in 
a circle of radius 1 unit, is 1 radian. 

More generally we have: 

  

All conversions between the two systems follow this ratio. 

It is not generally necessary to convert between the systems 
as problems are usually worked either entirely in the degree 
system (as in the previous sections) or in radians (as in the 

functions and calculus chapters). In the case of arc length and 
sector areas, it is generally better to work in the radian system. 

  

Using the above conversion factors we have: 

o m g B o TS . 70 70><180 18 or 1.2217¢. =



o | I 1 X | 
2 

w < 

  

Arc length 

Asthearclength AB of a circle 
is directly proportional to the 

angle which AB subtends 4 

at its centre, then, the arc 

length AB is a fraction of the 
circumference of the circle of 
radius r. B 

So, if the angle is 6¢, then the arc length is %[ of the 

circumference. 

Then, the (minor) arc length, AB, denoted by I, is given by 
1= fixMr =705 

The longer arc AB, called the major arc, has alength of 21tr - L. 

  

First we need to convert 110° into radian measure. 
c c 

10° = 110x & = 11T 180 18 

‘Then, the arc length, J is given by, 

| = roim s lin _ gam = 15.3588... 18 S 3588 

‘Therefore, the arc length is 15.36 cm. 

    

    
ANGLE MEASURE 

Area of a Sector 

The formula for the area of a 

sector is derived as follows: 

If a sector is cut from a circle 

of radius r using an angle at 
the centre of O radians, the 
area of the complete circle is 

2. 

  

The fraction of the circle that forms the sector is % of the 

complete circle, so the area of the sector is: 

Area of sector = %x 72% 3% = %‘: cm?. 
4 

The perimeter is made up from two radii (14 cm) and the arc 
L= 0 = 7x 3N AT 

4 4 

21n 
The perimeter is 14 + =5 cm. 

  

The angle of the shaded segment = 21 — 7—6': = “Tm 

‘The shaded area can be found by subtracting the area of the 
sector in the smaller circle from that in the larger circle. 
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CHAPTER 3 

Shaded area = 

Lo m 1 o N 1%g oy - 597 5 om2 2><9x X 42x s 12(9 4%) 5912ncm 

The perimeter is made up from two straight lines (each 9 - 4 
=5cm long) and two arcs. 

Perimeter = 1o+4xT+9x“T” — 10+ lin 1431 L 

6 

Exercise 3.1.1 

1. Find the areas and perimeters of the following sectors. 

Radius Angle 

a 2.6 cm g 
3 

b 11.5cm z 
4 

c 44 cm B 
4 

d 68m b 
3 

3n 
€ 0.64 cm 2 

51 
f 7.6 cm < 

T 
g 324m I 

A cake has a circumference of 30cm and a uniform 

height of 7cm. A slice is to be cut from the cake with 

two straight cuts meeting at the centre. If the slice is 
to contain 50°™" of cake, find the angle between the 
two cuts, giving the answer in radians to 2 significant 
figures and in degrees correct to the nearest degree. 

The diagram shows a part of a Norman arch. The 
dimensions are shown in metres. 

Find the volume 

of stone in the 

arch, 
your 
cubic 

correct to three 
significant figures. 
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giving 

answer in 

metres, 

In the diagram, find the 

value of the angle A in 

radians, correct to three 

significant figures, if the 

Ilem 

perimeter is equal to 40 cm. 

The diagram shows 

a design for a shop 
sign. The arcs are 

each one quarter of a 

complete circle. The 

radius of the smaller 

circle is 7 cm and the 

radius of the larger circle is 9 cm. 

Find the perimeter of the shape, correct to the nearest 

centimetre. 

6. 

Extra questions 

Answers 

Find the shaded area in the diagram. The dimensions 
are given in centimetres. O is the centre of the circle 
and AT is a tangent. 

T 

A 
Give your answer correct to three significant figures. 

The diagrams show a circular sector of radius 10cm 
and angle 6 radians which is formed into a cone of 
slant height 10 cm. The vertical height & of the cone 
is equal to the radius r of its base. Find the angle 6 
radians. 

   



  

The Unit Circle 

Middle School courses usually include how to find the 
sine, cosine and tangent of acute angles contained 

within a right-angled triangle. 

hyp 
opp 

We can extend this to enable us to find the sine and cosine 

ratio of obtuse angles. To see why this works, or indeed why 
it would work for an angle of any magnitude, we need to 
reconsider how angles are measured. To do this we start by 
making use of the unit circle and introduce some definitions. 

From this point on we define the angle § as a real number that 

is measured in either degrees or radians. So that, an expression 

such as sin(180° - 0) will imply that 6 is measured in degrees 
as opposed to the expression sin(r‘ - 8) which would imply 
that 0 is measured in radians. In both cases, it should be clear 
from the context of the question which one it is. 

Exact Values 

There are several 'exact values of acute angles that are 
important. They result from two special triangles. It is 

probably easier to remember the triangles rater than a table 

of values. 

TRIGONOMETRIC RATIOS 

Isosceles Right Triangle 

n 
sin45’=sin—= 

4 - i
 

cosd5"=cosZ = 
4 Sl 

tan45'= tanfi =1 
4 

Right Triangle in an Equilateral Triangle 

  

si.n30'=sin£=l 
6 2 

cos30=cos == fi 
6 2 

T 1 
tan30=tan—=—= 

6 3 

sin60"= sinE ol fi 
32 2 

1 
€0s60°= cosE=2 

3 2 

z 
tan60'= tan;:«/g 

Finally, we have the extreme values of 0 and 90° which are 
not really representable in a right triangle. 

sin0°=0,c080"=1,tan0’=0 

5in90°=1,c0s90°= 0,tan90" is undefined 

Note that tan90° is undefined. We will shortly see why this 

is the case. 
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By convention, an angle 8 is measured in terms of the rotation 
of a ray OP from the positive direction of the x-axis, so that a 
rotation in the anticlockwise 
direction is described as a 

positive angle, whereas a 

rotation in the clockwise 
direction is described as a 

negative angle. 

  

Let the point P(x, y) be a point 

on the circumference of the unit 
circle, x2+y2 = 1, with centre at the origin and radius 1 
unit. 

With OP making an angle of 6 with the positive direction 

of the x-axis, we draw the perpendicular from P to meet the 
x-axis at M. This then provides the following definitions: 

Note that this means that the y-coordinate corresponds to 
the sine of the angle 6, that the x-coordinate corresponds to 
the cosine of the angle 6 and that the tangent,. . ., well, for 

the tangent, let’s revisit the unit circle, but this time we will 

make an addition to the diagram. 

  

Using the existing unit circle, tangent 

we draw a tangent at the point YA 

where the circle cuts the positive R 

x-axis, Q. 

P y) 
Next, we extend the ray OP to 1 
meet the tangent at R. ° ry 

: Gt : PM _ RO _ RQ 
Using similar triangles, we have that oM~ 00 T 

  

    
That is, tan0 = #0 - which means that the value of the 
tangent of the angle 6 corresponds to the y-coordinates of 
point R cut off on the tangent at Q by the extended ray OP. 

o . - PM _y _ sin@ 
Also, it is worth noting that tan® o % e (as 

long as cos@#0). 

fht is, - 

150 

  

From our list of exact values, we note that tan90" is undefined. 

This can be observed from the previous diagram. If 6 = 90°, 

P lies on the y-axis, meaning that OP would be parallel to 

QR, and so, P would never cut the tangent, meaning that no 
y-value corresponding to R could ever be obtained. 

Angle of any Magnitude 

From the unit circle we have seen how the trigonometric 

ratios of an acute angle can be obtained, i.e. for the sine ratio 
we read off the y-axis, for the cosine ratio, we read off the 

x-axis and for the tangent ratio we read off the tangent. As the 
point P is located in the first quadrant, then x > 0, y > 0 and 
T20,x20. 

This means that we obtain positive trigonometric ratios. 

So, what if P lies in the second quadrant? 

We start by drawing a diagram 

for such a situation: 

F di hat T rom our diagram we see that 
A if P lies in the second quadrant, 

the y-value is still positive, 
the x-value is negative an 

therefore the ratio, 7, e 8 

negative. 

    

   

  

This means that, sin 8 > 0, cos 8 < 0 and tan 6 < 0. 

In a similar way, we can y 

conclude that if 180" < 6 < 270", 
A 

ie. the point P is in the third 

quadrant, then, o 
X 

y-value is negative sin 6 < 0 . 
P(x,y) 

x-value is negative cos § < 0 

the quotient is positive tan 8 > 0 

For the fourth quadrant we 
have, 270 < 6 < 360, so that: YA 

y-value is negative sin 6 < 0 0 

x 
x-value is positive cos 8 > 0 |7 

~ Py 
the quotient is negative tan 6 < 0 

We now know that, depending on which quadrant an angle 
lies in, the sign of the trigonometric ratio will be either 
positive or negative. In fact, we can summarize this as follows: 

 



    

    

  

Sine is +ve 

cosine is -ve 

tangent is —ve 

   
   

  

   

    

  

   

  

All ratios are 
positive 

     
   

     

( osine is +ve 

sine is —ve 

tangent is ~ve 

Tangent is +ve 
sine is —ve 

cosine is -ve 

    

  

Mnemonic: 

All Stations To City 

However, knowing the sign of a trigonometric ratio reflects 
only half the information. We still need to determine the 

numerical value. We start by considering a few examples. 

Consider the value of sin150°. 

Using the unit circle we have: 
P(=x, ), 

By symmetry we see that the ‘fi 

y-coordinate of Q and the 

y-coordinate of P are the same 

and so, sin150°= sin30". 
    

  

‘Therefore, sin150°= %2 

o = i S ) o T Note that 150° = 150 755 = 3 and 30° = %, 

. . sm 
so that in radian form we have, sinse= = sinZ = 

3 
! 

6 2° 

In other words, we were able to express the sine of an angle 

in the second quadrant in terms of the sine of an angle in the 
first quadrant. In particular, we have that 

1f0° < 6 < 90°, sin(180° - 6) = sinf 

: B e . 
Ifor<B< 7,sm(n‘—9):sme 

Next, consider the value of cos225°. 

Using the unit circle we have: 

By symmetry we see that the 

x-coordinate of P has the same 

magnitude as the x-coordinate of 

Q but is of the opposite sign. 

  

RIGONOMETRIC RATIOS 

So, we have that c0s225° = - cosd5°. 

Therefore, cos225° 

  

  

£ n 

Similarly, as 225" = 2% and45° = =, 4 1 

CUS3”( _*COS”—{ —'l—' 

4 4 2 

In other words, we were able to express the cosine of an angle 
in the third quadrant in terms of the cosine of an angle in the 
first quadrant. In particular, we have that: 

IF0° < 0 <90, cos(180° + 8) = —cosB 

{ 
Ifor<B< '; , cos(r + 0) = —cosf   

As alast example we consider the value of tan300°. This time 

we need to add a tangent to the unit circle cutting the positive 

Xx-axis: 

By symmetry we see that the 
y-coordinate of P has the same 

magnitude as the y-coordinate of 
Q but is of the opposite sign. 

So: tan300°= — tan60". 

Therefore, tan300°= —/3 .    
In other words, we were able to express the tangent of an angle 

in the fourth quadrant in terms of the tangent of an angle in 

the first quadrant. In particular, we have that: 

*Unsaved < 

sin(150) 

tos(zzs) 

tan(200) 
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a 

Step 1: Start by drawing the unit 
circle: 

Step 2: Trace out an angle of 

120° 

  

Step 3: Trace out the reference angle in the first quadrant. In 

this case it is 60°. 

Step 4: Use the symmetry between the reference angle and 

the given angle. 

Step 5: State relationship and give answer: 

c0s120° = —c0s60° = —L 
2 

b 
YA 

Step 1: Start by drawing the unit 

circle: 
21007 

Step 2: Trace out an angle of 300 * 
210°   

Step 3: Trace out the reference 

angle in the first quadrant. In this case it is 30°. 

Step 4: Use the symmetry between the reference angle and 
the given angle. 

Step 5: State relationship and give answer: 

sin210° = ~sin30° = 1 

Step 1: Start by drawing the unit 
circle: 

Step 2: Trace out an angle of 77” 

(= 315°) 

  

Step 3: Trace out the reference 

angle in the first quadrant. In this case it is i i 
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Step 4: Use the symmetry between the reference angle and 

the given angle. 

Step 5: State relationship and give answer: 

50574—": = cos® = 
1 

4 2 

Step 1: Start by drawing the unit 

circle: Y 
. 4 

Step 2: Trace out an angle of —41': 

(= 2259) ’h s 

Step 4: Use the symmetry between the reference angle and 

the given angle. 

1=
 

Step 3: Trace out the reference 

angle in the first 

quadrant. In this case it 
is T, 

1 

  

Step 5: State relationship and give answer: 

S T tan2l = tanl = | 
"7 1 

‘The results we have obtained, that is, expressing trigonometric 

ratios of any angle in terms of trigonometric ratios of acute 
angles in the first quadrant (i.e. reference angles) are known 
as trigonometric reduction formulae. There are too many 
formulae to commit to memory, and so it is advisable to draw 

a unit circle and then use symmetry properties as was done in 

Example 3.2.1. We list a number of these formulae in the table 
below, where 0< 6 < '2—[ (=90°). 

Note: From this point on, angles without the degree symbol or 
radian symbol will mean an angle measured in radian mode. 

sin(180°-0) = sin® sin(n—6) = sin® 

2 | cos(180°—0) = —cosO cos(m—0) = —cosO 

tan(180°-0) = —tan® tan(mw—0) = —tan® 
  

sin(180°+6) = —sin@® 

3 | cos(180°+0) = —cosB 

tan(180° +0) = tan® 

sin(m+6) = —sin® 

cos(m+0) = —cos® 

tan(n+6) = tan® 
  

sin(360°-0) = —sin@® 

4 | cos(360°—0) = cos® 

tan(360° - 0) = —tan@ 

sin(2n—0) = —sinf 

cos(2m—0) = cosB 

tan(2m—0) = —tan®          



  

There is another set of results that is suggested by symmetry 
through the fourth quadrant: 

   

  

     

  

The symmetry of the unit circle leads to a number of further a secd5°® = 
relationships 

vk \ 
b cosecl150° = 

[ n LT c cofl 6 

e . sin(Z— e) = cos0 sin(90°—8) = cosd 
(2 d sec0=—L=1=1 

0s0 1 

008(% —9) = sinB cos(90°-6) = sin® e T s ek T 

ise 3.2.1 mn(g— e) = ot tan(90°~6) = cotd Exerclsed) 
1 Convert the following angles to degrees. 

Rather than trying to memorise these results, reference to the 2n 3 

unit circle and its symmetries will reveal them when they are a 3 b ?" 
needed. B 5 

b3 L 
T d 18 

ReCIprocals 2. Convert the following angles to radians. 

Note the introduction of a new trigonometric ratio, cotf. a 180° b 270° 

This is one of a set of three other trigonometric ratios known 
as the reciprocal trigonometric ratios, namely cosecant, c 140° d 320° 
secant and cotangent ratios. These are defined as: 

3y Find the exact value of: 

sinl20° cos120° 

c tan120° d sec120° 

e sin210°  f c0s210° 

0 g @n210° h cot210° 

Note then, that cotf = fi = %, sinB#0 and cosec is 

often written 'csc'. i sin225° €0s225° 
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k tan225° 1 

m sin315°  n 

o @n315°  p 

q sin360° r 

s tan360°  t 

Find the exact value of: 

a sinm b 

c tanm d 

3n = f e sin 1 

3n tan== h 8 o 

% n i 
i smz j 

n tan 2% k an- 1 

m o sin2E n 
3 

Find the exact value of: 

a sin(-210°) b 

¢ tan(-135°) d 

e cot(-60°) f 

g sec(-135°) h 

Find the exact value of: 

C 
(o 

e cot&%) f 

e oy 
i cosec[fz?"jj 

k sec[—%‘) 1 

o 
5 

Extra questions 
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cosec 225° 

cos315° 

sec315° 

€0s360° 

cosec360° 

COSTU 

secT 

cos2® 

3n 
cosec— 

n cos— 
6 

cotZE 

Sn 
Cos— 

3 

cos(-30°) 

cos(-420°) 

sin(-150°) 

cosec(-120°) 

o 
v 

w 
o 

g 
5 

8 
2 

| 
| 

| 
| 

ol
 
|
 

wl
E 

s 
|5 

I3
 

15
 

15
 

g s | |=
 

s
 

& 5 | 
“l

F 
o 

  

The Pythagorean Identity 

We have seen a number of important relationships between 

trigonometric ratios. Relationships that are true for all values 
of @ are known as identities. To signal an identity (as opposed 
to an equation) the equivalence symbol is used, i.e. 

  

For example, we can write (x+1P =2 +2x+1 as this 

statement is true for all values of x. However, we would have 

to write (ar+1)"=x"+1, as this relationship is only true for 
some values of x (which need to be determined). 

One trigonometric identity is based on the unit circle. 

Consider the point P(x,y) on the unit circle, 

x2+y2=1-(1) 

From the previous section, we know that 

x = cosB - (2) 

y = sin® - (3) 

Substituting(2)and(3)into(1) wehave: (cos8)? + (sin6)? = 1 

or 

Kin'6easg =il - (4) 

This is known as the fundamental trigonometric identity. 
Note that we have not used the identity symbol, i.e. we have 
not written sin’@+cos’@=1. This is because more often 

than not, it will be ‘obvious’ from the setting as to whether a 

relationship is an identity or an equation. And so, there is a 

tendency to forgo the formal use of the identity statement and 

restrict ourselves to the equality statement. 

By rearranging the identity we have that sin’=1-cos’8 and 
cos’@=1-sin’0 . Similarly we obtain the following two new 
identities: 

Divide both sides of (4) by cos’@ 

sin20+cos20 _ 1 
c0s20 c0s?0  cos20  cos?®  cos?0 

  

  

< tan?0+ 1 = sec20 - (5) 

Divide both sides of (4) by sin’6: 

sin20+cos?0 _ 1 sin?6  cos?0 _ 1 
sin26 sin?0  sin20  sin0  sin20 

    

© 1 +cot20 = cosec?8 - (6)



    

Although we solved problems like this in section 10.1 by 
making use of a right-angled triangle, we now solve this 
question by making use of the trigonometric identities we 

have just developed. 

a From sin20 +cos?0 = | we have 

2 
'29+(_§) = in20+ 2 = sin 3 1 & sin’0 25 1 

: 16 e sin?f = =2 sin 2 

wding = 42 ~.sin@ ts 

Now,asnses%t, 

this means the angle is in the third quadrant, where the sine 
value is negative. 

Therefore, we have that sin6 = «‘5" . 

b Using the identit - 5in@ sing the identity tan@ < 

v — (45 4 we have tanf 55 "3 

a From the identity tan?6 + 1 = sec?® we have: 

52 2 5 25 2) 41 = == 4 (12) 1 = sec?6 < sec?6 144 1 

~sec2 = % 

: =418 c.sec v 

Therefore, as cos8 = L coso = iE. 
sec 13 

However, t<6 < 371[ ,meaning that 6 is in the third quadrant. 

And so, the cosine is negative. That is, cos8 

  

NOMETRIC RAT! 

Now, cosecd = —L- , but, 
sin@ 

  

=30 o gine = . T ) tan@ cosefisme tanBcos0 .. sin® 3 5 

- 
3 

Therefore, cosecd = = 5}13) = % n 

  

cos6 + tan@sin® = cosd+ 52 Ging 
cos@ 

» 
cosf+ sin’g 

cosf 

_ cos?0 +sin?8 
cos® 

1 
cos@ 

I 

secO 

cos® 1 -sin@ 
1+sin®  cos® 

_ c0s?0  (1-sinB)(1 +sin6) 
(1 +sin®)cos® (1+sinB)cosO 

- cos?® _ 1-sin?@ 
(1+sin®)cos® (1+ sinB)cos® 

_ cos20— 1 +sin20 
(1+ sinB)cos® 

_ (cos?0 +5sin?0) - | 
(1 + sin®)cosO 

_ -1 
{1+ sin®)cos® 

=0 

o     
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RH.S = tan6 - cot 

sin@cosO 

_ (1—cos®0) - cos?0 
sinBcos @ 

_ 1-2cos?0 3 
sinBcos@ ' 

= LHS 

O S S C S | 

Exercise 3.2.2 

L Prove the identity. 

a sinB + cot@cosh = cosecOd 

sin@ 1+ cos® 
+-——— = 2cosecd 3 

b 1+ cos® sin@ 4 
.o 

sin“@ c ———— = 1+cos@ 
1 —cos® 

d 3cos?x~2 = 1 —3sin’x b 

e tanZxcos?x + cot?xsin?x = 1 

fi secO — secOsin?0 = cos® 5, 

g sin20(1 +cot?0) -1 = 0 

h L oo 
1 —sing 1 +sing ¢ 

cos® i ———— +tanB = sec 
! 1+ sin@ 

3 1—sin® _ _cos® 
) cosf 1+sin® 

k — L = gecx—tanx 
secx + tanx 

2. 
1 siny+ SO5X 

1+ sinx 

secd +cosecd _ . —————= = sing + cos 
m tang + cotd ¢+ coso 
& sinx+1 _ —cosx+ 1 

cosx sinx + cosx — | 

v maptsse Bextseex—1 
tanx — secx + 1 

2. Prove the following. 

a (sinx + cosx)? + (sinx — cosx)? = 2 

b sec?0cosec?® = sec?6 + cosec?d 

c sintx — cos?x = (sinx + cosx)(sinx — cosx) 
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sin® _cos® 
cos® sin@ 

  

5in20 — cos?0 

    

  

  

  

  

Extra questions 

Answers 

  

  

d secty —secZy = tanx + tan’x 

sindx + cosdx _ T 
e ———————= = 1 - sinxcosx 

sinx + cosx 

x—1 
f (cotx — cose(;x)Z =S 

secx + 1 

g (2bsinxcosx)? + b2(cos?x - sinZx)? = b2 

Eliminate © from each of the following pairs. 

a x = ksin®,y = kcos® 

    

b x = bsin®,y = acosd 

c 1+sinB,y = 2—cos® 

d 1—bsin®,y = 2+acos® 

e x = sin®+2cosH, y = sin®—2cosO 

alf tan® = 3,1(505377‘, 

find: i cos® i cosech 

it sing = -3, 2 <q<om, 

find: i sec® i cot@ 

Solve the following, where 0 <0 <2m: 

a 4sin® = 3cosech 

b 2c0s%0 + sin@—1 = 0 

g 2-sin6 = 2cos?0 

d 2sin20 = 2+ 3cosO 

     



  

Compound Angle Identities 

As we have seen in the previous section, there are 
numerous trigonometric identities. However, they were 

all derived from the fundamental identities. In this section we 

develop some more fundamental identities (which will lead us 

to more identities). These fundamental identities are known 

as compound angle identities. That is, they are identities that 

involve the sine, cosine and tangent of the sum and difference 
of two angles. 

We start with the sine of the sum of two angles, sin(o+B): 

The Diploma Course does not expect students to prove this 

result. It is included for the sake of completeness. 

A commonly given proof of these identities is again only valid 

for acute angles: 

  

In the figure, ZAOE = .+ 3. The construction lines are drawn 

with the right angles indicated. Since ZDCO = o (alternate 
angles) and ZDCE = 90° - a, it follows that 

ZAOE = a+p. 

Therefore, we have, sin(ot+B) = sinAOE = % 

BC,OC, DE, EC 
OC" OE EC OE 

= sino.x cosP + coso. x sinf3 

It is now possible to prove the difference formula, replacing 

B by —B we have: 

sin(oe—PB) = sin(o+ (-B)) 

= sinocos(—B) + cosasin(—p) 

= sinacos P — cososinp 

(cos(-B) = cosp and sin(-B) = —sinfi) 

And so we have the addition and difference identities for sine: 

sin( e+ B)=sinorcosf+cosasinfl 

sin(@— f8) =sinarcos B — cosarsinfy 

A similar identity can be derived for the cosine function 

(using the same diagram): 

_0B_AB 
OE OE 

_oB_CD 
OE OE 

0B 0C CDEC 
OC" OE EC OE 

= coso.cosP - sinasinp 
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Similarly, from this and replacing p by —B we have that 

cos(o—P) = cosocosp + sinosinp - 

And so we have the addition and difference identities for 

cosine: 

Also, the tangent addition identity can be proved as follows: 

. sin® _ 
Using cos@ g 

_ sin(o+B) 
ma(-B) cos(o+ B) 

_ sinoicosf + cosasinB 
cosoicosP — sinosinf} 

sino.cosf + cosasinp 
_ cosaLcos P 

cosacosP — sinasinB 
cosocosP 

_ tano+ tanB 

1—tanoctan 

Again, if we replace B by - we have: 

tan(o— B) = tano. — tan B 

I + tanoctanB 

And so we have the addition and difference identities for 
tangent: 

Asa special case of the compound identities we have obtained 

so far, we have a set of identities known as the double-angle 
identities. 

Using the substitution 6 = ot = B we obtain the identities: 

sin26=2sinfcosf 

c0s260=cos’0—sin’6 

i.e. substituting 6 = o = B into: 

sin(o+B) = sinacosP + cosasinB we obtain 

sin(B+6) = sinBcosO + cosOsin® 

..sin20 = 2sinBcosO 

Similarly, substituting © = o = 3 into: 

cos(0.+B) = cosocosP — sinasinB we obtain 
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cos(B+0) = cosBcosO - sinOsin® 

2.c0820 = cos20 —sin20 

The second of these can be further developed to give: 

c0s20 = c0s20 —sin20 = cos20 — (1 —cos20) = 2cos?6 - 1 

and 

€0s20 = cos20 —sin?0 = (1 —sin20) —sin?0 = 1 —2sin20 

Finally, we have a double-angle identity for the tangent:    
Summary of double-angle identities 

‘We have seen how trigonometric identities can be used to 
solve equations, simplify expressions and to prove further 
identities. We now illustrate this using the new set of identities. 

  

sin3o._cos3o _ sin3ccoso — cos3asing 
sino.  cosa sino.coso 

_ sinBo—a) 

sinoucos o, 

_ sin2o 
1. 
=sin2 25111 o 

=2 

 



  

cos3o = cos(20+ @) b 

3n 2n b i 34 @n2® an®+ ank = cos2acos0 sin20ising; anST m[3_1;+z_n) _ gty gt 
& 2012 andTan2E e d 

= (2cos20.— 1)coso— 2sinoicos osin o 12712 476 

2cos3a — coso.— 2sin?o.cos o 

2cos3o.— coso—2(1 - cos2o) cos o 

= 4cos3a—3cos0 

2cos300— cosoL—2cos 0+ 2c0s 0 

  

LHS &, SH20WSiNG  _ 2singvoshyising 
c0s2¢ +cos¢+ 1 2cos2p— 1 +cos+ 1 

_ sing(2cos¢ + 1 
cosO(2cosd + 1) 

_ sing 
cosd 

tand 

RHS 

  

" 
LHS = 005(37" - ) 

= cos(2)oos6 + sin( 2 sino T T S ——— 

= 0x cosf+(~1)x sin® Exercise 3.3.1 

= —sin@ L Expand the following. 

=RH.S a sin(o.+¢) b cos(3a+2p) 

c sin(2x—y) d cos(h—2a) 

e tan(20 — o) f tan(¢ —3m) 

2. Simplify the following. 

a sin2otcos3B — sin3Pcos20 

b cos20tcos 5P — sin2asin 5B 

  

  

  

c sinxcos2y + sin2ycosx 
cos15° = cos(45°—30°) = c0s45°c0s30° + sin45°sin30° 

d cosxcos3y + sinxsin3y 
S LB ] 
S22 202 e tan20. — tanp 

S+l 
T+ tan2atanp 

- £ tan(x—y) + tany 
22 1 —tan(x —y)tany 

g 1—tang 

1+ tan, 

_ _ A3+l 1 % 1 h —sin(o+B) + —=cos(o+ B @ )+ poos(a ) 
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Given that sin6 = %,0<0<Z and 

cos¢ = —15—3, n<o< 37“ , evaluate: 

a sin(0+ ) 

b cos(6+6) 

c tan(0 —¢) 

Given that sinf = —%. n<O< 377[ 

and cos¢ = —2, o< 377[ , evaluate: 
13 

a sin(6—0) 

b cos(0—0) 

c tan(0 +¢) 

Given that sin® = 72. 37n <0<2m, evaluate: 

a sin26 

b 0526 

¢ tan26 

d sin46 

Given that tanx = -3, 72—[ <x<m,evaluate: 

a sin2x 

b €0s2x 

c tan2x 

d tandx 

Find the exact value of: 

- ST 2 
sin— b sin105° a i35 

In 5 
c cos=+ d tan 165 

Given that tanx = g, n<x< 37" , evaluate 

a sin2x b cosec2x 

¢ cosdx d tan2x 

  

  

  

9. Prove the following identities. 

a cotx — cot2x = cosec2x 

b sin(x+y)sin(x —y) = sin’x —sin?y 

c sec?y = |+ tan’x 

_ _ 2sin20 
d  en@te)ru@-9)= coaroTn 

e cos*o—sinto = 1-2sin’0 

f LoV gy 
sinycosy  siny 

1+cos2y _ _sin2y 
8 sin2y T—cos2y 

h csc(e + E) = sec 
2 

i cos3x = cosx — 4sinZxcosx 

i 1+5sin20 _ cosB+ sinf 
) c0s260 cosB - sin® 

k (cotx + cscx)? = 1+ieosx 
1 —cosx 

1 sin3o = 3sino - 4sina 

_ 1 -tan’x 
m cos2x = ————— 

1 +tan®x 

n 2cotBsin?0 = sin20 

o tan(%) = csch — cotd 

e () P csex n(3 )+ cot( 5 

q  cosp+sinp = __cos2p 
cosB - sinf 

o tancu+ tanp = S0+ P) 
cosocosP 

-20 _ 1-cos@ si? 2 = s 2 2 
ind 3 

¢ Snwreosy g L, 
sinx + cosx 2 

Extra examples and questions 

Answers 

   



  

s 

  

The sine, cosine and tangent 

functions 
As we saw at the beginning of this chapter, there is an 

infinite set of angles all of which give values (when they 

exist) for the main trigonometric ratios. We also noticed that 

the trigonometric ratios behave in such a way that values are 

repeated over and over. This is known as periodic behaviour. 
Many real world phenomena are periodic in the sense that the 
same patterns repeat over time. The trigonometric functions 

are often used to model such phenomena which include 

sound waves, light waves, alternating current electricity and 
other more approximately periodic events such as tides and 

even our moods (i.e. biorhythms). 

Notice how we have introduced the term ‘trigonometric 
function; replacing the term ‘trigonometric ratio. By doing 
this we can extend the use of the trigonometric ratios to a new 

field of problems. 

‘When the trigonometric functions are used for these 
purposes, the angles are almost always measured in radians. 
However, there is no reason why we cannot use degrees. It 
will always be obvious from the equation as to which mode 
of angle we are using. An expression such as sinx will imply 

(by default) that the angle is measured in radians, otherwise 
it will be written as sinx*, implying that the angle is measured 

in degrees. 

What do trigonometric functions look like? 

The sine and cosine values have displayed a periodic nature. 

This means that, if we were to plot a graph of the sine values 
versus their angles or the cosine values versus their angles, we 

could expect their graphs to demonstrate periodic behaviour. 
We start by plotting points. 

3.4 Trigonometric Function 

GONOMETRIC FUNC 

    

  

O | 0| 3045|609 [120]135]150 (180 ... |330 360 
  

sind*| 0.0 | 0.5 [0.71]0.87| 1.0 {0.86]071| 0.5 | 0.0 | ... |-05] 0.0                             
  

  s 

  

Notice that, as the sine of angle 8 corresponds to the y-value 
of point P on the unit circle, as P moves around the circle in 
an anticlockwise direction, we can measure the y-value and 
plot it on a graph as a function of  (as above). 

Feature of sine graph: 

iz Maximum value = 1, Minimum value = -1 

2. Period = 360° (i.e. graph repeats itself every 360°) 

3. If P moves in a clockwise direction, y-values continue 

in their periodic nature (see dashed part of graph). 

The Cosine Function 
  

6 | 03045 60|90 |120]|135 150|180 ... |330 | 360 
  

cos” [10 |0.87 |0.71]0.5 [0.0 |-05|-07 [-0.8 [-10|... 08 |10                             
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Plotting these points on a cosf" versus 0-axis, we have: T 

[VARVA 
1. Maximum value = 1, Minimum value = -1 

-360 E 

Feature of cosine g(aph. 

2 Period = 360° (i.e. graph repeats itself every 360°) 

3 If P moves in a clockwise direction, x-values continue 

in their periodic nature. 

There is a note to be made about using the second method 
(the one used to obtain the sine graph) when dealing with 
the cosine graph. As the cosine values correspond to the 

x-values on the unit circle, the actual cosine graph should 

have been plotted as shown below. However, for the sake 
of consistency, we convert the ‘vertical graph’ to the more 

standard ‘horizontal graph’: 

x-value = cos@     
There are some common observations to be made from these 

two graphs: 

1. We have that the period of each of these functions is 

360°. This is the length that it takes for the curve to 

start repeating itself. 

2. Theamplitude of the function is the distance between 
the centre line (in this case the 0 -axis) and one of the 

maximum points. In this case, the amplitude is 1. 
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The sine and cosine functions are useful for modelling wave 
phenomena such as sound, light, water waves etc. 

The Tangent Function 

‘The third trigonometric function (tangent) is defined as: 

and so is defined for all angles for which the cosine function 
is non-zero. 

The angles for which the tangent function is not defined 

correspond to the x-axis intercepts of the cosine function 

which are £90°, £270°, +450°, ... . At these points the graph 
of the tangent function has vertical asymptotes. 

The period of the tangent function is 180°, which is half that of 
the sine and cosine functions. Since the tangent function has 

a vertical asymptote, it cannot be said to have an amplitude. 

It is also generally true that the tangent function is less useful 

than the sine and cosine functions for modelling applications. 
The graph of the basic tangent function is: 

| 
I 

I 

I 

| 
t + “ i 

~180 »1/ 90 180 | 

| | | 
| | | 

| | 
i ] 

When sketching these graphs using a calculator, be sure that 
the WINDOW settings are appropriate for the MODE setting. 

In the case of degrees we have: 

| 
| 

| 

| 
| 
+ 
| 
| 
| 

| 
| 

      r1{sinle)



  

Transformations of 

Trigonometric Functions 
We now consider some of the possible transformations that 
can be applied to the standard sine and cosine function and 
look at how these transformations affect the basic properties 
of both these graphs. These effects are the same as those 
discussed in §2.3. 

1 Vertical translations 

Functions of the type flx) = sin(x) + ¢, f(x) = cos(x) + ¢ and 
fx) = tan(x) + c. represent vertical translations of the curves 

of sin(x), cos(x) and tan(x) respectively. If ¢ > 0 the graph is 

moved vertically up and if ¢ < 0 the graph is moved vertically 

down. 

  

A graph sketch should show all the important features of a 
graph. In this case, the axes scales are important and should 
show the correct period (21) and range [-3,-1]. 

‘Thatis,addingor subtractinga fixedamount toa trigonometric 
function translates the graph parallel to the y-axis. 

y = sin(x)+1 
a *z 

y = sm(x) 

    

b vy = cos(x)     
nge =f-3,-1] 

    

  

cos(x) -2 

  

NOMETRIC FUNCTION 

2 Horizontal translations 

Functions of the type f(x) = sin(x + &), fix) = cos(x + @) and 
flx) =tan(x + &) where a > 0 are horizontal translations of the 

curves sin(x), cos(x) and tan(x) respectively. In the context 

of trigonometric functions, horizontal transformations are 
often referred to as phase shifts. 

So that: 

fx) = sin(x - @), fix) = cos(x - @) and f(x) = tan(x - a) 

are translations to the right. 

while 

fix) = sin(x + &), fix) = cos(x + &) and fx) = tan(x + &) 

are translations to the left. 

  

a 

“This is the basic cosine graph 

    
y = cos(x) 

‘This graph s the basic cosine graph 

translated  units to the left. 

 



  

This is the tangent graph translated 

units to the right, This also translates 

the asymptotes : units to the right. 

Of course, it is also possible to combine vertical and horizontal 
translations, as the next example shows. 

  

Basic sine graph translated . units ¢ and 2 up. 

  

3 Dilations 

Functions of the form f(x) = a sin(x), f{x) = a cos(x) and 

flx) = a tan(x) are dilations of the curves sin(x), cos(x) and 

tan(x) respectively, parallel to the y-axis. 

In the case of the sine and cosine functions, the amplitude 
becomes |a| and not 1. This dilation does not affect the shape 
of the graph. Also, as the tangent function extends indefinitely, 
the term amplitude has no relevance. 
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This is the cosine graph with an 
amplitude of 2. \ 

A      

  

“This is the sine graph with an 

amplitude of % » 

  

Functions of the form fix) = sin(bx), flx) = cos(bx) and 

fix) = tan(bx) are dilations of the curves sin(x), cos(x) and 

tan(x) respectively, parallel to the x-axis. 

‘This means that the period of the graph is altered. It can be 
valuable to remember and use the formula that relates the 
value of b to the period T of the dilated function: 

1. The graph of f(x) = cos(bx) will show b cycles in 21t 
radizans, meaning that its period will be given by 
ps 7 7 

2 The graph of f(x) = sin(bx) will show b cycles in 21 

radians, meaning that its period will be given by 
=21 . 

3. The graph of f(x) = tan(bx) will show b cycles in T 

radians, meaning that its period will be given by 
=7 . 

Note: In the case of the tangent function, whose original 

period is T, the new period is T=% .



  

    a ‘The value of 7 is 2 so the period is T = e 

Note that this means that the period is half that of the basic 
sine function. 

Sx) = sin(2x)I v sin(x)     
b In this case the value of n = 1 and the period 

2n _ 2n 2 

  

c In this case, with f{x) = mn(i) , the value of n = % 

and the period T = = = 4x. 

  

TFRIGONOMETRIC FUNCTIC 

4 Reflections 

Recall that the graph of y = —f(x) is the graph of y = flx) 
reflected about the x-axis, while that of y = f(-x) is the graph 
of y = —f(x) reflected about the y-axis. 

fix) = —cosx is the basic cosine graph (green broken line) 

reflected in the x-axis. 

    $t Six) = —cosx 

fx) = sin(~x is the basic sine graph reflected in the y-axis. 

YR fix) =sinx 
 sin(=x)     

5 Combined transformations 

You may be required to combine some or all of these 

transformations in a single function. 

The functions of the type: 

f(x)=asin[b(x+c)]+d and f(x)=acos[b(x+c)|+d 

have: 

1. anamplitude of |a| (i.e. the absolute value ofa). 

2. a period of 28 
b 

3. a horizontal translation of ¢ units, ¢ > 0 = to the left ¢ 
< 0= to the right. 
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4. a vertical translation of d units,d >0 = up d <0 = 

down. 

Care must be taken with the horizontal translation. 

For example, the function /f(x) = 2cos (3: + g) | 

T T 
has a horizontal translation of oo the left, not 5! 

This is because: 

fix) = 2cos(3x+g)—l & ZC“S[E("‘ *gfli - 

i.e. if the coefficient of x is not one, we must first express the 
function in the form vcos|[hix = )]+ o, 

Similarly we have: /(x)=atan[4(x+c)]+d 

1 no amplitude (as it is not appropriate for the tan 
function). 

2 a period of o 
b 

3 a horizontal translation of ¢ units, ¢ > 0 = to the left 
€< 0= to the right. 

4. a vertical translation of d units, d >0 = up d < 0 = 

down. 

  

a fix) = ZSin[z( -g)]+ T 

This graph has an amplitude of 2, a period of T, a 

horizontal translation of 7 units to the right and a 
vertical translation of 1 unit up. 

Y g = 23in[2[x—%):]+l     

1 
Six) = —ccsi( —’5‘)+z 

The transformations are a reflection in the x-axis, a dilation 
of factor 2 parallel to the x-axis and a translation of %‘ right 
and 2 up. 

  

The transformations are a reflection in the x-axis, a vertical 

dilation with factor %, a horizontal dilation with factor 2 and 

a translation of g to the right. 
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Again we see that a graphics calculator is very useful in such 
situations ~ in particular it allows for a checking process. 

    
f1(x)=2- sin(Z- (x+§))+1 

st 
  

  - 4 
6.28 5 \ 1257       #19 \ 
  

Exercise 3.4.1 

1L State the period of the following functions. 

a fx) = sin%x 

b flx) = cos3x 

N OR 

() = B d 2(x) cos( 5 7[) 

e g(x) = 4sin(nx +2) 

£ g = 3mn(§ = z;) 

ONOMETRIC FUNCTIO| 

State the amplitude of the following functions. 

a Ax) = Ssin2x 

= Fpnd® b g(x) 3(,052 

c g(x) = 4-5cos(2x) 

d Sx) LsinG3m 

Find the period and, where appropriate, the amplitude 

of the following functions. 

a y = 2sinx 

= 3cost b ¥y 3 

c y = 3tanx 

d 2tan(x —2m) 

e y= 74sin[2(x+%fl+l 

f y =2-3cos(2x—-m) 

= 2tan¥ g y tang 

  

Sketch the graphs of the curves with equations: 

a ¥ = 3cosx,0<x<2n 

© X 
b y= smi,fnsxsn 

c y= 2cos(§),0£xs3n 
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- —%sin},\, 0<v<nm 6. 

X 
e y= 4lan(2 ),OSXSZn a 

  

f y = tan(-2x), —ns;‘s%‘ b 

g y= %cos(—}x],fg—(stg ¢y 

h y = 3sin(-2x),-t<0< d v 

Sketch the graphs of the curves with equations: e ¥y 

a v =3cosx+3,0<x<2n 

b yi= f ¥ 

¢ = ZCos(gjfZ.OSxSht g 

d _\*=7%sin3.\‘+2.05x£1r hoy= 

e y= 4lan(§] ~1,0sx<2n 

Extra questions 

f y=tn(-20+2-n<xs] 

1 I T 
yp = = —. + o —=<x<o g B 3cos( 3x) 3 3_1_3 

h y = 3sin(-2x)-2,-n<0<n Answers, 

Sketch the graphs of the curves with equations: 

    

mn(f—fl),osmz:z 
2 4 

T 
wn(72x+n),—n§x§2 

1 T T 
- — - —<x<Z 3cos( 3x-m), 3_:(_3 

35in(—2x—§j,—n$0£n 

  

 



  

The Inverse Sine Function 

he trigonometric functions are many-to-one which 
means that, unless we are careful about defining domains, 

their inverses are not properly defined. The basic graphs of 
the sine function and its inverse (after reflection about the 

line y = x for the arcsinx function) are: 

      

arcsinx    orsin~!x 

The inverse as depicted here is not a function (as it is one 

: many). This is inconvenient as the inverse trigonometric 

functions are useful. The most useful solution to this problem 

is to restrict the domain of the function to an interval over 

which it is one-to-one. 

In the case of the sine function, this is usually taken as 
g [%3] 

Though this is not the only possible choice, it is one that 
allows for consistency to be maintained in literature and 
among mathematicians. The function thus defined is written 

with a capital letter: f(x) = Sin(x), x€ [% ’2-‘] f 

  

Notice then that the domain of Sin-'x = range of Sinx = [-1, 1] 

and the range of Sin"'x = domain of Sinx = [—7—[, -—] . 

With these restrictions, we refer to Sin"'x (which is sometimes 

denoted by Arcsinx) as the principal value of arcsinx. 

(1Y 
For example, arcsm(ij =Zor=or-—or... 

However, Amsin(%] has only one value (the principal value), 

so that Amsin(%) = 2 

From our fundamental identity property of inverse functions, 
ie fof! (x) = f' oftx) = x,we have that: 

Therefore, Sin(Sin~'x)= x = Sin"!(Sinx) only if -1 <x< 1. 

  

This then means that sometimes we can provide a meaningful 
interpretation to expressions such as sin(Sin"'x) & Sin'(sinx) 

- as long as we adhere to the relevant restrictions. 
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1 ol s As-e [~ -~ exists. a 525[1,1]=>Sm 3 S. 

i1l =T ‘Therefore, Sin 27§ 

b asLerins AvesinL2) exists, 

Now, A.msin(~£) = —Arcsin(fi) ) 
2 2 3 

& As 1.3 ¢ [-1,1] = Sin"1(1.3) does not exist. 

d As sinme [~1,1] = Sin~!(sinmt) exists. 

So, Sin~!(sinm) = Sin~1(0) = 0. 

Note that Sin~!(sinm) # 7! Why? 

The Inverse Cosine Function 

For similar reasons as those for the sine function, the cosine 
function, cosx, x € ]-eo,c0[ being a many-to-one function, 

with its inverse, arccosx, -1 < x < 1 (or cos™'x, -1 < x < 1) 

needs to be restricted to the domain [0,n], to produce a 

function that is one-to-one. 

The function y = Cosx, x  [0,n], -1 < y < 1 (with a capital ‘C’) 

will have the inverse function defined as: 

fix)=Cos'x,-1<sx<1,-1<y<m 

The graphs of these functions are: 

¥y 

  

      ¥ =Cosx 
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Notice that the domain of Cos'x = range of Cosx = [-1, 1] 

and the range of Cos™'x = domain of Cosx = [0,7]. 

When these restrictions are adhered to, we refer to 

Cos™'x (which is sometimes denoted by Arccosx) as the 

principal value of arccosx. 

From our fundamental identity property of inverse functions, 

ie. fof'(x) = floflx) = x , we have that: 

‘Therefore, Cos(Cos™'x)= x = Cos!(Cosx) only if 0 < x < 1. 

This means that we can provide a meaningful interpretation 

of expressions such as cos(Cos™'x) and Cos™(Cosx)- as long 

as we adhere to the relevant restrictions. 

‘Note also that in this case, Cos ' (—v) = Cos (1), 

  

Lo 1L a Asze[ 1,1] = Cos 2exxsts. 

Therefore, Cos™! 

o
=
 

wi
n 

  

S 1B exi b As —5€ [-1,1]= Cos (‘7) exists. 

Lety = CGS“(—%), then, Cosy = —?, 0<y<m. 

=gz & Smeg 

= Sm 
6 

¢ A cos(%-")e [-1, l]:Cos’l(cos(%‘)) exists. 

Cm’l(cos(%)) = Cos™!(0) = 72‘ 

Notice that Cos-‘(cos(%[)) # 377(



    

a 

Let Arccos(%) =x..as 3%5 [0,11= Arcoos(%) = g 

‘Then, sin(Axccos(fi)) = sin(x) = sing = JLE 

N 1 1 . 1 =) = xo &t =H.L 4 Let Sin (4) x..as4e[ 1,1]= Sin (4) exists. 

b However, this time we 4 1 

cannot obtain an exact e 
value‘for X, S0 we r{xake use m -5 

of a right-angled triangle: 

‘Therefore, from the triangle we have that cosx = %_é « 

ie cos(sin"(l)) = cosx = E 1 2 

c Leths’l() 0. as%é[—l,l]flCos"G) 4 

Then, sin(g—Cos"G)) = sin(’z—[—e) = cosB. 

Therefore, sin(g—Cos"(%D = cos(Cos"GD = % 

The Inverse Tangent Function 

‘The tangent function can be made one : one by restricting its 
domain to the open interval (-’2—‘, 72: i 

fGx) = Tan(x), xe (—-, 2) 

‘The function y = Tan(x), x € ( —) o0 <y < oo, (with a 

capital “T°) will have the 1nverse2funcuon defined as f(x) = 
Tan"'(x), , —o < x < oo, The graphs of these functions are: 

  

METRIC FUNCTI 

Notice then that the domain of Tan™'x = range of Tanx— (—oo 
o) and the range of Tan"'x = domain of Tanx = ( 23 

When these restrictions are adhered to, we refer to 
Tan-'x (which is sometimes denoted by Arctanx) as the 

principal value of arctanx. 

From our fundamental identity property of inverse functions, 

ie. fof'(x) = flofitx) = x , we have that 

Therefore, Tan(Tan"'x)= x = Tan"(Tanx) only if —% <x< 12": < 

As we saw with the sine and cosine functions, it may also be 
possible to evaluate expressions such as tan(Tan"'x) and = 

Tan™!(tanx). 

For example, tan(Tan"'1) = m(%) =13 

21 _ Tan-l(=yf3) = L 3 ) Tan~!(~/3) 

Note also that Tan !(-x) = ~Tan(x) 

however, Tan"(m 

  

a asdernls smf‘(—g) exists. 

Then, we let 6 = Sin”(z), so that Sinf = = 
5; 

Next we construct an appropriate right-angled triangle: 

13 
So, un(samx (_3)) - .,,.,(_Sin_l(z)) il 

5. 5 4 

= = _tan§ = 3 tan(-0) tan® = 7 

1 
b As3 Le (o0, 00) = Tan! (5) exists. 

1 _ 1 Let Tan (:J 0..Tan® = 3 

Next we construct an appropriate right- @// “ | 

angled triangle: Ag‘ In 

‘Then, sin(ZTan“(%)) = sin26 = 2sinBcosO 
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LU > 3 

_ 1 3 143 -1l =2X—=X—= d Sin = e s —= 0 7o in "3 Cos 5 

:% f Tan '3 g Tan 2 

ho sin07 i Arctan0.1 
[t e e A e e = i 

j Arccos0.3 k sin"'-0.6 

Itis these restricted functions that are programmed into most s 
calculators, spreadsheets etc. 1 Tan's  m Cos 3 

If the calculator is set in radian mode, some sample n Tan 30 o Sin”(g) 
calculations are: 

2. Solve the following equations, giving exact answers. 

0.523599 | 

a Arctanx = i 
x 1 
¢ . n 

b Arcsin(2x) = = = 3 
4 

c Arccos(3x) = s 4 

3. Prove: 

a Arc:an(4)fArclan(§] = 
5 4 

.14 o 4] 14 -3 = b sinl($)esint(-2) =0 

4. Solve for x, where: 

Arctan(3x) — Arctan(2x) = Arclan@) 

5. Find the exact value of: 

a sin [g— Cos"@):l 

b cos]:g’-*sin"(fij] 

c cos[Tan~!(~4/3)] 

d (Cos" ) 

e sec(Sin"[-%)) 

f cot(Tan"!(~1)) 

  

Extra example and questions 
Exercise 3.5.1 

1. Find the principal values of the following, giving 
answers in radians. 

a Tan 1 b Arcsinl 

c Aracos- Answers   172



  

We have already encountered solutions to trigonometric 
equations as part of a general observation in this 

chapter. There are two basic methods that can be used when 

solving trigonometric equations: 

Method 1. Use the unit circle as a visual aid. 

Method 2. Use the graph of the function as a visual aid. 

The method you choose depends entirely on what you feel 

comfortable with. However, it is recommended that you 
become familiar with both methods. 

Solution of sinx = a, cosx = a and tanx = a 

The equation sinx = % produces an infinite number of 

solutions. This can be seen from the graph of the sine function. 

  
Using the principal angle [%] and symmetry, the solutions 
generated are: 

Forx20 x=2 -2 op s Z 3p Z 
" 6% 

_ES_I! 13 177 o o 

Forx<0 x=—n—£,—2n+%,f3n—%,m 

_7x iz om 
6 6 6 

The same problem could have been solved using Method 1. 
We start by drawing a unit circle and we continue to move 
around the circle until we have all the required solutions 

within the domain restriction. Again, the use of symmetry 

plays an important role in solving these equations. 

For x> 0: 

    

   

     

    

  

    =on+l 
* 6 
outside domain 

outside domain     

Again, for the restricted domain -2n<x<m, 

iy = Lify o In _llnz we have sinx 21.fx 666 oy
 

The process is identical for the cosine and tangent functions. 
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a Step 1:  Find the reference angle: 

x = Cos™1(0.4) = 1.1593 . 

Step 2: Sketch the cosine graph (or use the unit circle): 

fix) = cosx 

  

21— Cos~1(04) 4T —Cos!(0.4) 

Step 3: Use the reference angle and symmetry to obtain 
solutions. 

‘Therefore, solutions are, 

Cos™(04),2—Cos™ (0.4),27r+Cos™ (04),4r—Cos™ (0.4) 

= 1.1593,5.1239, 7.4425, 11.4071 

Step 4: Check that: 

i all solutions are within the domain 

ii you have obtained all the solutions in the domain. 

  

rz(x)-o 4 
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Stepl: Find reference angle (in first quadrant): 

_ 3 Ix I 15k Tan~'(1) :g 

From a calculator, we g 

see that there are four 

solutions. 

Then, as the four solutions 

obtained all lie in the 

interval [0, 47t], Step 4 is 

satisfied. 

  

  
0> 5c0sx = 2¢>cosx = £ c Scosx—2 = 

5 

je. cosx =04 

This is, in fact, identical to the equation in part a and so, we 
have that x = 1.1593, 5.1239, 7.4425, 11.4071 

Part ¢ Example 3.6.1 highlights the fact that it is possible 
to transpose a trigonometric equation into a simpler form, 

which can then be solved. Rather than remembering (or 

trying to commit to memory) the different possible forms 

of trigonometric equations and their specific solution 

processes, the four steps used (with possibly some algebraic 

manipulation) will always transform a (seemingly) difficult 
equation into one having a simpler form, as in Example 3.6.1. 

Some forms of trigonometric equations are: 

sin(kx) = a, cos(x+c¢) = a, tan(kx +¢) = a, 

beos(kx+c¢) = a, bsin(kx+c)+d = a 

And, of course, then there are equations involving the secant, 

cosecant and cotangent functions. 

However, even the most involved of these equations, e.g. 
bsin(kx +¢)+d = a, can be reduced to a simpler form: 

1. Transpose: 

bsin(kx+c)+d = ae bsin(kx+c) = a-d 

< sin(kx+c¢) = a_;d 

2. Substitute: 
   

  

a— 
Then, setting kx+c¢ = 6 and = m, we have 

sin® = m which can be readily solved.
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3. Solve for new variable: 

Sothatthesolutionsto sin® = mare® = 0, 0,, 05, ... 

4. Solve for original variable: 

‘We substitute back for 8 and solve for x: 

kxte =0, 0,0, ... 

Sk =0,-¢0,-¢0;-c, ... 

0,—c 0,-c 6;-¢ 

k kok T 

All that remains is to check that all the solutions have 

been obtained and that they all lie in the restricted 

domain. 

    ox =   

  

‘The best way to see how this works is through a number of 
examples. 

  

a Let © = 2x, so that we now solve the equation cosf = 
0.4. 

From Example 3.6.1 a we already have the solutions, namely; 

Cos™(04),2—Cos™ (04),27+Cos ™' (0.4),47—Cos™ (0.4) 

= 1.1593, 5.1239, 7.4425, 11.4071 

However, we want to solve for x not 8. So, we substitute back 

for x: 

ie.  2x = 1.1593,5.1239, 7.4425, 11.4071 

= 0.5796, 2.5620, 3.7212, 5.7045 

To check that we have all ™" DN y 
the solutions, we sketch the 

graphs of y = cos(2x) and y 
=0.4 over the domain 0 < 
x<2m. ST 5% 

11x)cos(2-x) 

The diagram shows that 
there should be four 2 » 

solutions. 

  
This time, to solve tan(% ) = —1 wefirstlet 6 - é\ so that 

we now need to solve the simpler equation tan® = —1. 

b From Example 3.6.1 b we have that 

=a-Tor-2 Tan-Z O=n 27;431: 44 5 

e ln 15 
4°4°4°' 4 

  

To check that we have e 
all the solutions, we 

  

  

      

sketch raphs of () (1] 
{’—xf e £2()=-1 

-1 7 over the 2 9 T = 
domam 0<x<2m. / 

The diagram shows farst) 
that there should be & 
only one solution. 

3n 
Therefore, the only solution is x = == 

  

There is of course another step that could be used to help us 
predetermine which solutions are valid. This requires that we 
make a substitution not only into the equation, but also into 
the restricted domain statement. 

In Example 3.6.2 b, after setting 0 ~ ;\ to give tan = —1, 

‘we next adjust the restricted domain: 6 = %\- eox =20 

So, from 0<x<2n wenowhave 0<26<2n=0<0<n 

That is, we have the equivalent equations: 

lnn(é\J =-1,0<xy<2m:tan® = -1, 0<0<m 
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4sin(3x) = 2 sin(3x) = 0.5,0°<x<360°. 

Let 0 = 3x=>sin® =10.5, 

New domain: 

O°Sx5360"a0°sg£360" &0°<0<1080° 

‘Therefore, we have, sinf = 0.5,0°<6<1080°. 

The reference angle is 30°. Then, by symmetry, we have: 

f(8) = sin® 

  

.8 = 30°, 180° - 30°, 360° + 30°, 540° - 30°, 

720° +30°, 900° - 30° 

30°, 150°, 390°, 510°, 750°, 870° 

10°, 50°, 130°, 170°, 250°, 290° 

All solutions lie within the original specified domain, 
0°<x<360°, 

  

3% 

  

22 

Let ’—2‘+12-': = 0= cosh = ? 

Next,3+5 =03 - o-Jeox=20-x 

(Obtain x in terms of q) 

New domain: 
—M<x<ANS -N<20-n<4n & 0<20<5n 

Sn <<l =0<0< 5 
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iix Bz 
66 

But we still need to find the x-values: 

Therefore, substituting = % +7§[ back into the solution set, 
we have: 

x,m_% lln 13z 
22 666 

_mlin 131 @x+n 373 3 

i = 2% 81 10m 
37373 

And, we notice that all solutions lie within the original 
specified domain, -t <x<4m. 

  

) 

a 

2sinx = Jcosx o X — 3, 
cosx 2 

< tany = 1.5,0<x<2n 

The  reference  angle s 

Tan~!(1.5)=0.9828 

x = Tan"!(1.5), ©+ Tan"1(1.5) 

  

=0.9828,4.1244 nTan~l(15) 
reference angle: 
Tan~1 (15D 

b In this case we make use of the double-angle identity, 
sin2x = 2sinxcosx. 

=.2sin2x = 3cosx & 2(2sinxcosx) = 3cosx 

& 4sinxcosx —3cosx = 0 

< cosx(4sinx—3) = 0 

cosx = 0, siny = 

B
l
 

3n e 

(G r-s(3) Sin [4,1[ Sin 7 

We solved two separate equations, giving the solution, 

= -—IE)E _-4(2)3_1‘ x = 0,Sin (4,2,1( Sin’ i3 

Solving for cosx = 0:x = 75‘ 

  

Solving for sinx = %;



Therefore, solution set is x = 

This time we make use of the cosine double-angle 
formula, cos2x = 1—2sin’x. 

. sinx = cos2x 

@ sinx = 1 -2sinx 

 2sin’x +sinx—1 = 0 
& (2sinx—1)(sinx +1) " 

- 
o 

& sinx = 3 or sinx = —1 

Y Sx) = sinx 

   
Again, we have two equations to solve. 

Solving for sinx = Solving for sinx = —1: 1 5 

i L a 

wl
g 

o
 

As the next example shows, the working required to solve 
trigonometric equations can be significantly reduced, 

especially if you know the exact values for the basic 
trigonometric angles as well as the symmetry properties 
(without making use of a graph). However, we encourage you 
to use a visual aid when solving such equations. 

4sinxcosx = A3, 2m<x<2m 

2sin2x = /3 using sin20=2sinBcosO 

5 
2 

—lln 10 —5n —4n & 2n 7n 8n 
S Tl i 

_ -llx =51 =51 2n © © 7n 4¢m 

sin2x = 

“FRIGONOMETRIC EQUATIONS 

  

Exercise 3.6.1 

= L e = L a sinx 5 b sinx 3 

¢ sinx = 73 d sin3x = % 

e sin(’é) = % f sin(rx) = 7_J2_§ 

If 0<x<2m, find: 

a cosx = % b cosx = —% 

_b ©)-1 g cosx = = d cos|3) =3 

= T = A2 e cos(2x) = 3 f cos(zx] 3 

If 0<x<2m, find: 

1 
tanx = — b tanx = — 

! A 
c tanx = 43 d MG) - 

e tan(2x) = -3 f L‘m(%x) =-1 

If0<x<2m or 0<x <360, find: 

sin(x° +60°) = 1 
2 

cos(x®—30°) = 7§ 

tan(x® +45°) = —1 
- 1 
sin(x®-20°) = — 

2 

1 cos(Zx 2) 3 

v,an(:—:fx) =1 

sec(2x+m) = 2 

| zx+fi) 
°°( 2 

If0<x<2m or 0<x <360, find: 

s 1 a cosx® = 5 

b 2sinx+/3=0 

e Stanx = 1 

d 5sinx® =2 
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4sin’x—3 = 0 

Lanx+1 =0 
S 

in[x+%) = - Zsm(x 3) 1 

Scos(x+2)-3 =0 

¢-T) = L !an(.x 6) fi 

2cos2x+1 =0 

tan2x - /3 0 

2sinx® = Scosx® 

2 2 cosec(z) 4 

%cot(Z,r) =0 

sol2) - -4 
Solve the following equations for the intervals 
indicated, giving exact answers: 

a sinBcosO = %, -t<O<T 

  

tand = lilsnAA —n<A<T 

sind_ _ _j _r<o<n 
1+ cos@ 

cos2y = 2cosx, ~T<x<T 

sec2x = Af2,0<x<2n 

Solve each of the following equations in the specified 

domain. 

2sin’r+sinr—1=0,0<r <47 

cos’x+2cosx—3=0, —27 <x <271 

2sin’x—siny =3, —r <x <57 

2sin’x—5siny +2=0, 0< r <67 

6cos’x+5cosx+1=0, —2r S <47   

   
Applications 

Functions of the type considered in the previous section are 

useful for modelling periodic phenomena. 

The vibration of aircraft wings.



  

‘These sorts of applications usually start with data that has been 

measured in an experiment. The next task is to find a function 

that ‘models’ the data in the sense that it produces function 

values that are similar to the experimental data. Once this has 

been done, the function can be used to predict values that are 
missing from the measured data (interpolation) or values that 
lie outside the experimental data set (extrapolation). 

  

‘We start by entering the data as lists and then plotting them 
using graph paper or a graph plotter. This graph was produced 

using a spreadsheet with 'scatter/smooth line’ selected. 

o s 10 15 20 25 30 ES 

This does suggest that the depth is varying periodically. It 

appears that the period is approximately 13 hours. This is found 
by looking at the time between successive high tides. This is 
not as easy as it sounds as the measurements do not appear 

to have been made exactly at the high tides. This means that 
an estimate will need to be made based upon the observation 

that successive high tides appear to have happened after 3, 
16 and 32 hours. Next, we look at the amplitude and vertical 
translation. Again, because we do not have exact readings at 
high and low tides, these will need to be estimated. The lowest 
tide recorded is 14.98 and the highest is 17.49. 

“FRIGONOMETRIC EQUATIONS 

A first estimate of the vertical translation is 
L;M,% = 16.235 and  the  amplitude s 

17.7-16.235 = 1.465. Since the graph starts near the mean 
depth and moves up it seems likely that the first model to try 
might be: 

2mr = i 2%+ 16: 5 1.465><sm(13) 16235 

  

  

o s 10 15 20 2 30 s 

The modelling function is shown in red. 

Notice that the dilation factor (along the x-axis) is found by 
using the result that if 

2n 2n =333, =2 ® n "t 

The model should now be ‘evaluated’ which means testing 
how well it fits the data. This can be done by making tables 
of values of the data and the values predicted by the model 
and working to make the differences between these as small 
as possible. This can be done using a scientific or graphics 
calculator. 

‘The model shown is quite good as errors are small with some 

being positive and some being negative. The function used is 
= 1465 x sin( 2%0) + 16235 and this can now be used to predict 

the depth for times that measurements were not made. Also, 
the graph of the modelling function can be added to the 
graph of the data (as shown). 

The modelling function can also be used to predict depths 
into the future (extrapolation). 

The next high tide, for example can be expected to be 13 
hours after the previous high tide at about 29.3 hours. This is 
after 42.3 hours. 
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a 

3 

Y] ¥ = d(1),0<1<90 
180/~ —/—/#r — 

# ™ 
120 N 

| 

| 
| 120 units 

| 

| 1(days) 

The features of this function are: 

Period = ZTR = 180 days 
(35) 

Amplitude =60 
Translation =120 units up. 

We ‘pencil inf the graph of y = 605in(9£0/) and then 

move it up 120 units: 

b The minimum is 120m’ and the maximum is 180m’. 

a ‘The amplitude is 20 mmHg and the period is given by: 

2% _ 6~ 12 seconds. 
) 5 ( g

 

b ‘The maximum is given by (100 + amplitude) = 100 + 

20 =120. 

c One full cycle is 1.2 seconds long: 

Pl 

100 

50 

  

Note that the graph has been drawn as opposed to 

sketched. That is, it has been accurately sketched, 

meaning that the scales and the curve are accurate. 

Because of this we can read directly from the graph. 

In this case, P = 110 when t = 0.4 and 0.8. 

Even though we have drawn the graph, we will now 

solve the relevant equation: 

St 
P(1) = 110110 = 720005(Tl)+100 

 



  

Exercise 3.6.2 

1L The table shows the temperature in an office block 

over a 36-hour period. 

b Find a rule that models the data. 

The table shows the average weekly sales (in thousands 
of $) of a small company over a 15-year period. 

  

t (hr) 0 3 6 9 12 | 15 | 18 
  

Time 0 15| 3 | 45| 6 |75 
  

                  T°C |18.3[15.0|14.1]16.0]19.7|23.0|23.9 
  

                Sales 35| 44|77 |84 |53]|33 
  

  

t (hr) 21 | 24 | 27 | 30 | 33 | 36 

T°C |[220183 150 |14.1 |16.0 |19.7 
  

                  

a Estimate the amplitude, period, horizontal and 

vertical translations. 

b Find a rule that models the data. 

c Use your rule to predict the temperature after 

40 hours. 

The table shows the light level L during an experiment 
on dye fading. 
  

th) | 0 | 1 | 2 ]3] 45 
L 66 | 40 | 7.0 [100] 75 | 41 

t (hr) 6 7 8 9 10 

L 6.1 |98 |83 | 44|53 

  

                  
  

  

                

a Estimate the amplitude, period, horizontal and 
vertical translations. 

b Find a rule that models the data. 

The table shows the value in $s of an industrial share 
over a 20-month period. 
  

Month 0 2 4 6 8 10 
  

  Value 7.0 | 11.5]10.8 | 56 | 2.1 | 43                 
  

Month 12 | 14 | 16 | 18 | 20 

Value 9.7 |11.9] 84 | 32 | 2.5 
  

                

a Estimate the amplitude, period, horizontal and 

vertical translations. 

b Find a rule that models the data. 

The table shows the population (in thousands) of a 

species of fish in a lake over a 22-year period. 
  

Year 0 2: 4 6 8 10 

Pop 11.2(12.1|13.0 | 12.7 | 11.6 | 11.0 

Year 12 | 14 | 16 | 18 | 20 | 22 

Pop 11.6 [ 12.7 | 13.0 | 12.1 | 11.2 | 11.2 

  

  
  

                    

a Estimate the amplitude, period, horizontal and 

vertical translations. 

  

  

Time 9 [105| 12 [135] 15 

Sales 55| 85|76 |43 |36 
  

                

a Estimate the amplitude, period, horizontal and 

vertical translations. 

b Find a rule that models the data. 

‘The table shows the average annual rice production, P, 

(in thousands of tonnes) of a province over a 10-year 

period. 
  

  

                  
  

  

                

i (yr) 0 1 2 3 4 5 

P 110 11.6 {107 | 105 | 11.5 | 11.3 

£ (yr) 6 | 7 | 819110 
P 10.4 | 11.0 | 11.6 | 10.7 | 10.5 

a Estimate the amplitude, period, horizontal and 
vertical translations. 

b Find a rule that models the data. 

The table shows the depth of water (D metres) over a 

5-second period as waves pass the end of a pier. 
  

t (sec) 0 0.5 1 15] 2 

D 11.310.810.3]10.2 | 104 
  

                

  

t(sec) | 25| 3 | 35| 4 |45 5 

D 109114 [ 11.7[11.8 | 11.5]11.0 
  

                  

a Estimate the amplitude, period, horizontal and 
vertical translations. 

b Find a rule that models the data. 

The population (in thousands) of a species of butterfly 

in a nature sanctuary is modelled by the function: 

P=3+zsin(%’§i’),os:sxz 

where t is the time in weeks after scientists first started 

making population estimates. 
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a ‘What is the initial population? 

b What are the largest and smallest populations? 

c When does the population first reach 4 

thousand butterflies? 

A water wave passes a fixed point. As the wave passes, 

the depth of the water (D metres) at time t seconds is 

modelled by the function: 

D= 7+%cos[2?m],1>0 

a What are the greatest and smallest depths? 

b Find the first two times at which the depth is 6.8 
metres. 

The weekly sales (S) (in hundreds of cans) of a soft 

drink outlet is modelled by the function: 

5= ]3+5.5c05(%’73),l>0 

tis the time in months with t = 0 corresponding to 1st 

January 1990. 

a Find the minimum and maximum sales during 
1990. 

b Find the value of t for which the sales first 

exceed 1500 (S = 15). 

c During which months do the weekly sales 

exceed 1500 cans? 

The rabbit population, R(/) thousands, in a northern 
region of South Australia is modelled by the equation: 

R(t) = 12+ 3cos(gr), 0<r<24> 

where tis measured in months after the first of January. 

a What is the largest rabbit population predicted 

by this model? 

b How long is it between the times when the 

population reaches consecutive peaks? 

c Sketch the graph of R(r) for 0<¢<24. 

d Find the longest time span for which R(7) 213.5. 

e Give a possible explanation for the behaviour of 
this model. 

13. 

Extra questions 

Answers 

  

Samantha is sitting in a rocking chair. The distance 
d(t), in centimetres, between the wall and the rear of 

the chair varies sinusoidally with time f, in seconds. 

At time t = 1, the chair is closest to the wall and 

d(1) = 18. At t = 2, the chair is farthest from the wall 

and d(2) = 34. 

a What is the period of the function? 

b How far is the chair from the wall when no one 

is rocking in it? 

c What is the domain of the function, if Samantha 

rocks the chair back and forth 20 times? 

d What is the range of the function? 

e What is the amplitude of the function? 

f What is the equation of the sinusoidal function? 

g What is the distance between the wall and the 
chair at t = 8s? 

A weight attached to the end of a long spring is 
bouncing up and down. As it bounces, its distance 

from the floor varies sinusoidally with time. You starta 
stopwatch. When the stopwatch reads 0.4s, the weight 

first reaches a high point 72cm above the floor. The 
next low point, 32cm above the floor, occurs at 1.6s. 

a Find a particular equation for distance from the 
floor as a function of time. 

b What is the distance from the floor when the 

stopwatch reads 17.2s? 

c What was the distance from the floor when you 

started the stopwatch? 

d What is the first positive value of time when the 

weight is 59cm above the floor? 

 



  

The Sine Rule 

Previous sections dealt with the trigonometry of right- 

angled triangles. The trigonometric ratios can be used 
to solve non-right-angled triangles. There are two main 

methods for solving non- 

right-angled triangles, the 
sine rule and the cosine 
rule (which we look at 

later in this section). Both 

are usually stated using a 

standard labelling of the 
triangle. This uses capital C 
letters to label the vertices 

and the corresponding small letters to label the sides opposite 

these vertices. 

  

g b 

B 

4 G 

sind = sino 
sinB = sinp 

sinC = siny 

If we add the three altitudes to the triangle, we can calculate 
the area of the triangle in three ways. 

The altitude from vertex A to side a is labelled h . These 
will meet in a single point, though this is not crucial to the 

following argument. 

  

c 

Area of triangle = % base x height. There are three versions 
of this: 

1 
Area= %xax}zfl :Exaxrxsinb’ 

1 1 . 
Area= Exbx/q,:;xbxaxsm(: 

1 1 0 
Area= Ex:x}g.:gxcxbxsmA 

‘These must be equal so (with the usual provisos about non- 

zero denominators): 

%Xax:xsinl?:%xbxaxsinC:%erbxsinA 

axexsinB=bxaxsinC=cxbxsind 

axexsinB _bxaxsinC _cxbxsind 

  

axbxc axbxc axbxc 

sinB _sinC _ sind 

b c a 

The reciprocal version of this is the more usual version of the 

sine rule: 
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So, when should/can we make use of the sine rule? 

Although the sine rule can be used for right-angled triangles, 
it is more often used for situations when we do not have a 

right-angled triangle, and when the given triangle has a 
known side and the angle opposite it is also known: 

  

a Firstly, label the triangle using the standard method of 
lettering. ‘Solve the triangle’ means find all the angles 
and the lengths of all the sides. Since two of the angles 
are known, the third is C = 180" - 47" - 83" =50". 

‘The lengths of the remaining sides can be found using the 
known pairing of side and angle, b and B. 

  a _ b ., _a _ 238 
sind  sinB " sind47°  sin83° 

_ 23.8xsin47° 
sin83° 

= 17.5369... 

That is, BC is 17.5 cm (correct to one d.p.). 

Similarly, the remaining side can be calculated: 

e - b . e _ 238 
sinC  sinB " sin50°  sin83° 

_ 23.8 xsin50° 
sin83° 

= 18.3687... 

‘That is, AB is 18.4 cm (correct to one d.p.). 

    

b This triangle is different from the previous example in 

that only one angle is known. It remains the case that a 
pair of angles and an opposite side are known and that 
the sine rule can be used. The angle A must be found 
first. 

sind _ sinB _ sind _ sin42° 
a b 28.7 924 

_ 287 xsin42° 
92.4 

= 0207836 

> sind 

-4 = sin 0207836 
11.9956° 
11°59°44” 

The answer to the first part of the question is 12° correct to 
the nearest degree. It is important, however, to carry a much 
more accurate version of this angle through to subsequent 

parts of the calculation. This is best done using the calculator 
memory. 

The third angle can be found because the sum of the three 
angles is 180°. So, C= 180" - 12" - 42" = 126". 

An accurate version of this angle must also be carried to 

the next part of the calculation. Graphics calculators have 

multiple memories labelled A, B, C etc. and students are 
advised to use these in such calculations. 

5 i s 28.7 28.7sin126° 
The remaining side is: —— = ——— B 

s S Smi26e | sin12® sinl12° 

e = 111.6762... 

That is, AB is 111.7 cm (correct to one d.p.) 

T T BT S s e 

Exercise 3.7.1 A4 b 
c 

1. Use the sine rule to complete 

the following table, which a 
refers  to the standard 
labelling of a triangle. 

acm bem cem A B C 

1 48.2 29°  141° 

2 1.2 74> 25° 

3 113 60° 117° 

4 517 38 93° 

5 185 114 68° 

6 146 150 84° 

7 1.3 16° 85° 

8 285  39° 124° 

9 0.8 0.8 82° 

10 333 36° 135° 

11 16.4 52° 84° 

12 64.3 24° 145° 

13 309 277 75* 

14 59.1 29° 102°



  

acm bcm ccm A B C 

15 9.8 79 67° 

16 542 16° 136° 

17 14.8 27.2 67° 

18 10.9 £ 125° 

19 17.0 15° 140° 

20 401  30° 129° 

Making use of the sine rule we have: 

sind _ sinB@sinZO’ _ sinB 

  

a b 10 20 

. 20sin20° 
10 

= sin~!(25in20°) 

= 43.1601 ... 

That is, B = 43°10 

However, from our diagram, the angle ABC should have been 
greater than 90°! That is, we should have obtained an obtuse 
angle (90° < B < 180°) rather than an acute angle (0° < B < 

90°). 

So, what went wrong? 

This example is a classic case of what is known as the 

ambiguous case, in that, from the given information it is 
possible to draw two different diagrams, both having the 
same data. We show both these triangles: 

C 
Case 1 20em 

10 cm 

A B 

€ 
Case2 20 cm ‘ sa6i 

A B 
Notice that the side BC can be pivoted about the point C and 
therefore two different triangles can be formed with BC = 10. 
This is why there are two possible triangles based on the same 
information. In the solution above, B =43 10’ - representing 

Case 2. However, our diagram is represented by Case 1! 

Therefore, the correct answer is 180° - 43" 10' = 136" 50'. 

The Ambiguous Case 

From Example 3.7.2, it can be seen that an ambiguous (having 
a'double meaning’) case can arise when using the sine rule. 
In the given situation we see that the side CB can be pivoted 
about its vertex, forming two possible triangles. We consider 
another such triangle in the next example. 

  

Applying the sine rule to the triangle gives: 

sinB _ sin29° . p_ 17 X5in29° 7 g e sinB S 

  

4 18.5cm B 

= 0.91575 

B = 66° 

Next, we have, 

C 180°-29° - 66° = 85° 

c 9 = 
Sngs® ~ smzee ¢ T 188 

‘There is, however, a second solution that results from drawing 

an isosceles triangle BCE. 

  

A 11.2cm E B 

This creates the triangle AEC which also fits the data. The 
third angle of this triangle is 37° and the third side is: 

AE _ 9 B 
Sn37e | sin2oc B 212 

The original data is ambiguous in the sense that there are two 

triangles that are consistent with it. 
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A 18.5cm B 

  

A 

You should also notice that the two angles in the solution are 

66° and 114° and that sin66° = sin114°. (That is, sin 66° = 

sin(180° - 66°) = sin 114°, 

‘We first determine the value of bsina and compare it with the 
value a: 

Now, bsino. = 80sin35° = 45.89 

Therefore we have that bsina (= 45.89) < a (= 50) < b (= 80) 

meaning that we have an ambiguous case. 

  

¢ 

Case 1: 
80 50 

A B 

Using the sine rule, sind _ w, we 
8 a b 

have 

sin35° _ sinB‘Q sing — 80sin35° 
50 80 50 

B = 66°35 

186   

C BChasbeen 
pivoted about 
vertex C.. 

    
80 

Case 2: 

A & B 
From case 1, the obtuse angle B' is 

“given by 180° - 66°35' = 113°25". 

This is because AB'CB is an isosceles 

triangle, so that 

ZAB'C = 180° - ZCB'B 

  

We start by drawing the triangle with the given information: 

Using the sine rule we have: ¢ 

sinC _ sin75 _ .. _ 90sin75 70 
% 70 S =Tp 

sinC = Al B ssinC = 1.241... 90 

‘Which is impossible to solve for as the sine of an angle can 
never be greater than one. 

Therefore no such triangle exists. 

e ey Y SR S B 

Exercise 3.7.2 b 

Find the two solutions to these 
triangles which are defined using the a 
standard labelling: 

B 

acm bem A 

1 74 18.1 20° 

2 133 19.5 14° 

3 13.5 17 28° 

4 10.2 17 15° 

5 74 15.2 20°



  

acm bem A 

6 10.7 14.1 26° 

7 115 12.6 17° 

8 8.3 13.7 24° 

9 13.7 17.8 14° 

10 13.4 17.8 28° 

11 12.1 16.8 23° 

12 12 14.5 21° 

13 12.1 19.2 16° 

14 7.2 13.1 15° 

15 12.2 17.7 30° 

16 9.2 209 14° 

17 10.5 13.3 20° 

18 9.2 19.2 15° 

19 7.2 13.3 19° 

20 135 204 31° 

2. Solve the following triangles. 

a o = 75°%a = 35.c =45 

b o 30,6 = 80 35°%a 

c B=40°%a=22b=8 

d §= 50%.a=112,c =80 

Applications of the sine rule 

Just as in the case of right-angled triangles, the sine rule 

becomes very useful. In particular, it means that previous 

problems that required the partitioning of a non-right-angled 
triangle into two (or more) right-angled triangles can be 

solved using the sine rule. 

  

Labelling the given diagram using the standard notation we 

With B = 180 -23°27" = 156°33’ 

and y = 180 - 19°46" — 156°33" = 3°41" 

Then, using the sine rule, 

b 250 
sin156°33" sin3°41" 

sin3°41" 

= 1548.63... 

b= 

Then, using A4CP we have, 

sin19°46" = %o i = bsin19°46’ 

=523.73 

So, the hill is 524 m high (to nearest metre). 

[ ey e e 

Exercise 3.7.3 

A short course biathlon meet requires the competitors 
to run in the direction S60°W to their bikes and then 
ride S40°E to the finish line, situated 20 km due south 
of the starting point. What is the distance of this 

course? 

A pole is slanting towards the sun and is making 

an angle of 10° to the vertical. It casts a shadow 7 

‘metres long along the horizontal ground. The angle of 
elevation of the top of the pole to the tip of its shadow 
is 30°. Find the length of the pole, giving your answer 

to2d.p. 

A statue A, is observed from two other statues Band C 
which are 330 m apart. The angle between the lines of 
sight AB and BC is 63° and the angle between the lines 
of sight AC and CB is 75°. How far is statue A from 

statue B? 

Town A is 12 km from town B and its bearing is 132°T 

from B. Town C is 17 km from A and its bearing is 
063°T from B. Find the bearing of A from C. 

The angle of elevation of the top of a building from 
a park bench on level ground is 18°. The angle of 
elevation from a second park bench, 300 m closer to 

the base of the building is 30°. Assuming that the two 
benches and the building all lie on the same vertical 
plane, find the height of the building. 
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a A man standing 6 m away from a lamp post 

casts a shadow 10 m long on a horizontal 

ground. The angle of elevation from the tip of 
the shadow to the lamp light is 12°. How high is 
the lamp light? 

b If the shadow is cast onto a road sloping at 30° 

upwards, how long would the shadow be if the 

man is standing at the foot of the sloping road 

and 6 metres from the lamp post? 

At noon the angle of elevation of the sun is 72° and is 
such that a three metre wall AC, facing the sun, is just 

in the shadow due to the overhang AB. The angle that 

the overhang makes with the vertical wall is 50°. 

Copy and illustrate this 

information on the diagram 
shown. 

a Find the length of the 

overhang. 

b At 4 p.m. the angle of 
elevation of the sun is 

40° and the shadow 

due to the overhang 

just reaches the base of 

the window. 

  

c How far from the ground is the window? 

The lookout on a ship sailing due east at 25 

km/h observes a reef N62°E at a distance 

of 30 km. 

a How long will it be before the ship is 
15 km from the reef, assuming that it 

continues on its easterly course. 

b How long is it before it is again 15 km from the 
reef? 

< What is the closest that the ship will get to the 

reef? 

    

  

  

The Cosine Rule 

Sometimes the sine rule 

is not enough to help 14 

us solve for a non right- 

angled  triangle.  For A 

example, in the triangle 18 
shown, we do not have B 

enough information 

to use the sine rule. That is, the sine rule only provided the 

following: 

a _ 14 18 

sinC 
  
sin30°  sinB 

where there are too many unknowns. 

For this reason we derive another useful result, known as the 
cosine rule. The cosine rule may be used when 

L two sides and an included angle are given: 

This means that the third c 

side can be determined 

and then we can make a A 

use of the sine rule (or the 

cosine rule again). B 

2. three sides are given: 

This means we could T 

then determine any of the B 
angles. 

The cosine rule, with the standard labelling of the triangle has 
three versions: 

‘The cosine rule can be remembered as a version of Pythagoras’s 

Theorem with a correction factor. We now show why this 

works. 

Consider the case where there is an acute angle at A. Draw a 
perpendicular from C to N as shown in the diagram. 

 



  

B2 = h24x2 In AANC we have 

e h=b2-x2 (1) 

In ABNC we have a? = 2+ (c-x)? 

ok =a-(c-x)? - (2) 

Equating (1) and (2) we have, 

a*—(c—x)* = b2-x2 

e at—c2+2ex—x2 = b2-x? 

©a = b2+cr-2cx 

However, from AANC: cosd = %ax = bcos4 

Substituting this result for x: _ 

Although we have shown the result for an acute angle at A, 
the same rule applies if A is obtuse. 

  

a 

10.5cm, 
The data does not include an angle and the 
opposite side so the sine rule cannot be 
used. The first step, as with the sine rule, 

is to label the sides of the triangle. Once 6 €M 
the triangle has been labelled, the correct 
version of the cosine rule must be chosen. In this case, the 
solution is: 

o2 

  

a?+b*-2abcosC 

= 10.52+ 62— 2% 10.5 X 6 X c0s69° 

101.0956 
a =101 

  

I 

The remaining angles can be calculated using the sine rule. 

Again, it is important to carry a high accuracy for the value of 
¢ to the remaining problem: 

i sinC % sinB _ € sin 2 p = 6Xsin69° . p— 340 
10.0546 

Finally, 4 = 180° - 34° -69° = 77° 

b In this case, there are no angles given. The cosine rule 
can be used to solve this problem as follows: 

24cm 6.8cm 

5 6.6 cm 

  

a b2+ c2—2bccosAd 

6.6% = 242 +6.82-2X24X 68X cosd 

2x24x68xcosd = 24%+682-6.62 

_24%+682-66% 
cosd 

2X24%X6.8 

= 0.25858 

A = 75.014° 

=75°1" 

Next, use the sine rule: 

sinB _ sind ESEinp = 24 X sin75 B = 20°34 
b a 6.6 

So that C = 180° - 75° - 21° = 84° 

The three angles, correct to the nearest degree are A = 75°, B 
=21°& C=84" 

Exercise 3.7.4 

Solve the following triangles. 

acm  bcm ccm A B C. 

1 135 16.7 36° 

R 8.9 10.8 101° 

3 22.8 12.8 87° 

4 211 4.4 83° 

g 10.6 15.1 74° 

6 13.6 20.3 20° 

7 9.2 13.2 46° 

8 234 625 69° 

9 9.6 15.7 41° 

10 217 360 362 

11 7.6 34 94 

12 72 152 143 

13 9.1 15.8 520 

14 14.9 112 16.2 63° 42° 75° 

15 20 0.7 25 

16 7.6 3.7 9.0 

17 18.5 9.8 24.1 

18 20.7 163 13.6 
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acm  bcm  ccm A B c 

19 224 29.9 28° 

20 7.0 9.9 42° 

21 21.8 20.8 23.8 

22 1.1 1.3 89° 

23 1.2 0.4 85° 

24 237 27.2 ™ 

25 34 4.6 52 

Applications of the Cosine Rule 

  

‘We start with a diagram: 

Note that: 

ZABC = 90°+20° = 110° 

  

- 
Using the cosine rule we have, ~ € E 

AC? = 1524222 -2 X 15% 22¢c0s 110° 

= AC = /225 + 484 — 660 X (~0.3420...) 

~AC = 30.5734... 

That is, she is (approximately) 30.57 km from her starting 

point. 

  

The question does not 
give the bearing of the 
first leg of the trip so 
the diagram can show 
this in any direction. 
H is the harbour, I the 
island and T the point 

where the yacht makes its turn. 

  190 
    

The angle in the triangle at T is 180° - 38° = 142°. 

‘The problem does not contain an angle and the opposite side 

and so must be solved using the cosine rule. 

12 = h2+i2-2hicosT 

724 112-2 %7 x 11 X cos 142° 

291.354 
=171 

I 

  

‘That is, distance from the harbour to the port is 17.1 km (to 

one d.p) 

L e 

e g 
‘We will need to find an angle. 5 
In this case we determine the 8 

largest angle, which will be the 
angle opposite the longest side. 

From our diagram we have & 

82 = 42+52-2x4x5c0sC 

.64 = 16+ 25-40cosC 

  

5 cosC = 1612564 
40 

-8 
10 

~C = 125%" 

To find the volume of sand we first need to find the surface 
area of the sandpit. 

Area = %nbsinC = %x4><5><sin(125°6') = 81815 m?. 

The volume of sand required is 0.2 x 8.1815 = 1.64 m?. 

Exercise 3.7.5 

Thomas has just walked 5 km in a direction N70°E 
when he realises that he needs to walk a further 8 km 
in a direction E60°S. 

a How far from the starting point will Thomas 

have travelled?
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b What is his final bearing from his starting 
point? 

2. Two poles, 8 m apart, are facing a rugby player who is 
45 m from the left pole and 50 m from the right one. 
Find the angle that the player makes with the goal 
mouth. 

3. The lengths of the adjacent sides of a parallelogram are 
4.80 cm and 6.40 cm. If these sides have an inclusive 
angle of 407, find the length of the shorter diagonal. 

4. During an orienteering venture, Patricia notices two 

rabbit holes and estimates them to be 50 m and 70 m 
away from her. She measures the angle between the 
line of sight of the two holes as 54°. How far apart are 
the two rabbit holes? 

5. To measure the length of a lake, a surveyor chooses 
three points. Starting at one end of the lake she walks 
in a straight line for 223.25 m to some point X, away 
from the lake. She then heads towards the other end 
of the lake in a straight line and measures the distance 
covered to be 254.35 m. If the angle between the paths 
she takes is 82°25} find the length of the lake. 

6. A light aeroplane flying N87°W for a distance of 155 
km, suddenly needs to alter its course and heads S34°E 

for 82 km to land on an empty field. 

a How far from its starting point did the plane 
land. 

b ‘What was the planes final bearing from its 
starting point? 

Area of a Triangle 

Given any triangle with sides a and b, height h and included 
angle 6, the area, A, is given by: 

_1 A—zbh 

2 h o 
However, sin® = e h = axsin® and so, we have that: 

where 0 is the angle between sides a and b. 

Note that the triangle need not be a right-angled triangle. 

Because of the standard labelling system for triangles, the 

term sin@ is often replaced by sinC, giving the expression 
Area="Y axbsinC. 

A similar argument can be used to generate the formulae: 

Area=Y%bxcsinA=%axcsinB 

  

Based on the given information we can construct the 

following triangle: 

The required area, A, is given by: 
Q 

= Labsing = 150 x 10 x sina0® 
2 2 9 

o 10 cm 
=289 

That is, the area is 28.9 cm?. P R 

  

Since all the measurements of the triangle are known, any one 
of the three formulae could be used. Many people remember 
the formula as ‘Area equals half the product of the lengths of 
two sides times the sine of the angle between them’ 

Area = = X 27.78 X 46.68 X sin36° = 381m> 

- 
i
 

Area = = X 27.78x29.2 X sin110° = 381m> 

-
 

Area = 5% 29.2 X 46.68 X sin34° = 381m?
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Exercise 3.7.6 

1. 

5 

192 

Find the areas of these triangles that are labelled using 
standard notation. 

acm bcm  ccm A B c 

a 3594 12846 14970 12° 48> 120° 

b 3521 5455 812 20° 320 128° 

c 4635 17071 186.68 14°  63° 103 

d 3391 159.53 163.10 12° 78 90° 

e 4298 2507 4861 62° 31° 87° 

f 3988 2469 3401 84° 38° 58 

g 4330 3026 6494 34° 23° 123° 

h 1244 233 1312 68° 10°  102° 

i 4317 4644 2415 67° 82° 31° 

j 2316 3271 2434  45° 87° 48° 

k 50.00 5291 3864 64° 72° 44° 

1 4431 1752 4877 65° 21° 94° 

m 12.68 2349 2234 32° 79° 69° 

n 4237 4237 6856 36° 36° 108° 

o 4070 1565 4126 77° 22° 81° 

A car park is in 

the shape of a 

parallelogram. ~ The s 
lengths of the sides of 

the car park are given 
in metres. 

320 m 

What is the area of the car park? 

The diagram shows a circle of radius 
10 cm. AB is a diameter of the circle. 

AC=6cm. 

Find the area of the shaded region, giving an exact 

answer. 

The triangle shown has an area of 110 NC,,,L\\ 

65 cm? Find x. SN 

Find the area of the following. 
a b 
.x 6 

12 
c 

\ 

7 

  

6. A napkin is in the shape of a quadrilateral with 

diagonals 9 cm and 12 cm long. The angle between the 

diagonals is 75°. What area does the napkin cover 

when laid out flat? 

7. A triangle of area 50 cm® has 
side lengths 10 cm and 22 cm. 
What is the magnitude of the 
included angle? 

  

8. A variable triangle OAB is formed by a straight line 
passing through the point P(a,b) on the Cartesian 
plane and cutting the x-axis and y-axis at A and B 

respectively. 

If ZOAB = 6, find the area of AOAB in terms of a, b 

and 6. 

9. Find the area of AABC for the given diagram. 
c 

9cm 

A 20cm B D 

Exercise 3.7.7 

1 The diagram shows a 
triangular  building plot. 

The distances are given in 

metres. Find the length of 7281 
the two remaining sides of 
the plot giving your answers 
correct to the nearest hundredth of a metre. 

2. Xiang is standing on level ground. Directly in front of 

him and 32 metres away is a flagpole. If Xiang turns 

61° to his right, he sees a post box 26.8 metres in front 

of him. Find the distance between the flagpole and the 
post box. 

3. A triangular metal brace 

is part of the structure of a Allgm s 
bridge. The lengths of the S 
three parts are shown in 
metres. Find the angles of 
the brace. 

4. Find the smallest angle in the triangle whose sides 
have length 35.6 cm, 58.43 cm and 52.23 cm. 

5. Ayton is directly north of Byford. A third town, 
Canfield, is 9.93km from Ayton on a bearing of 128°T. 
‘The distance from Byford to Canfield is 16.49km. Find 

the bearing of Canfield from Byford.



SINE & CosINE RuLEs 

  

10. 

A parallelogram has sides of length 21.90 cm and 
95.18 cm. The angle between these sides is 121°. Find 

the length of the long diagonal of the parallelogram. 

A town clock has ‘hands’ that are of length 62cm and 

85cm. 

a Find the angle between the hands at half past 

ten. 

b Find the distance between the tips of the hands 

at half past ten. 

A shop sign is to be 
made in the shape of a 
triangle. The lengths of 3753 ¢, 297 cm 
the edges are shown. 

Find the angles at the 

vertices of the sign. 4493 cm 

An aircraft takes off from an airstrip and then flies for 
16.2 km on a bearing of 066°T. The pilot then makes a 
left turn of 88° and flies for a further 39.51 km on this 
course before deciding to return to the airstrip. 

a Through what angle must the pilot turn to 

return to the airstrip? 

b How far will the pilot have to fly to return to the 
airstrip? 

A golfer hits two shots from the tee to the green. How 
far is the tee from the green? 

Tee 217m 

121° 

75m 

Green 

The diagram shows a parallelogram. Find the length of 
the longer of the two diagonals. 

21.55cm 

35.5cm 

A triangle has angles 64°, 15° and 101°. The shortest 

side is 49 metres long. What is the length of the longest 

side? 

13. 

15. 

16 

Extra questions 

The diagram shows a part of the support structure for 

a tower. The main parts are two identical triangles, 

ABC and ADE. 

AC = DE = 27.4cmand BC = AE = 23.91cm 

The angles ACB and AED are 58°. 

Find the distance BD. 

e E 

The diagram shows a design for the frame of a piece of 

jewellery. The frame is made of wire. 

Find the length of 
wire needed to make 

the frame. 

142 cm 142 cm 

A triangular cross-country running track begins 

with the runners running North for 2050 metres. The 
runners then turn right and run for 5341 metres on a 

bearing of 083°T. Finally, the runners make a turn to 
the right and run directly back to the starting point. 

a Find the length of the final leg of the run. 

b Find the total distance of the run. 

c What is the angle through which the runners 
must turn to start the final leg of the race? 

d Find the bearing that the runners must take on 

the final leg of the race. 

Show that for any standard triangle ABC, 

cosd , cosB  cosC _ a>+b?+c? 
a b c 2abe 

 



Theory of Knowledge 

The Rightness of Right Triangles 

When you began studying trigonometry, perhaps the first 
lesson was an introduction to the primary trigonometric 

ratios of sine, cosine, and tangent. These particular primary 

trigonometric ratios are all derived from the ratios between 

two sides within a right triangle. The two special triangles 
(i.e. 45°-45°-90" and 30°-60°-90") are also right triangles and 
they are the building blocks for the unit circle. It appears that 
trigonometry depends critically on right triangles. However, 

as you continue your study in trigonometry and circular 

functions, you will soon come across questions when you 

need to consider trigonometric ratios of angles greater than 
a right angle. On what basis are you confident in extending 
your knowledge based on right triangles to angles greater than 

90°? What other knowledge claims must you establish before 

you can generalize your understanding of trigonometry? 

Trigonometry was first introduced around the 3rd century 
BC. It stems from the Greek origin of trigono and metron. 
This branch of mathematics mainly involves right triangles, 

even when non-right triangles are presented. However, the 

basic understanding of trigonometry becomes less absolute 

when you start studying spherical trigonometry when the 

figure is no longer a planar triangle. For non-planar triangles, 

the interior angles of such figures may have a sum greater or 
less than 180°. As you have already learned in your pre-DP 
math classes, primarily in your Euclidean Geometry lesson, 

the Angle Sum Triangle Theorem (ASTT) dictates that the 

sum of the interior angles of a triangle will always be 180°. 

However, when you began to move away from Euclidean 
Geometry, did you ever wonder whether it is necessary to 
have a new set of theorems and conjectures? 

In the process of the development of new theorems, 

mathematicians need to go through a very rigorous process 
to ensure it is true for all cases. However, it merely takes one 
counterexample to disprove the theorem’s validity. If you follow 

this argument then, when you extend your knowledge beyond 

Euclidean geometry, certain geometrical facts are no longer 

true. Hence, can you safely suggest that the original theorems 
and facts are invalid? If not, then when is it appropriate to set 
limitations to ensure the validity of theorems and how wide 

should those limitations and restrictions be? 
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Mathematics and Music 

Music, especially tones and sound waves, are often expressed 

using mathematics. Sound waves allow the listener to visualize 
tones, pitches, volumes, and all other related properties which 

are uniquely understood by one’s audio perception. Does 

it then merely imply that music is mathematical or does it 

suggest that mathematics is musical? Mathematics is in 

Group 5 while Music is part of Group 6, and yet, it appears 

that mathematics and music are highly associated with each 
other. How do you see this connection? Does music help you 

to see the truth in mathematics? Does mathematical truth 

help you to understand music? 

If you are a musician or if you study music, can you merely 

use mathematics alone to create a piece of music? If a random 
set of numbers has no particular mathematical pattern, 

can you conclude that it is also the same as a collection of 

random musical notes with no harmony? Conversely, do all 

mathematical patterns translate into a corresponding set of 

musical tones? 

Music and Mathematics - the only ‘universal 
languages'? 

  

e r 7 

Answers 
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odern structures such as our main picture are often 

made from supporting structures of steel wires and 

beams. These are frequently visible. 

It is both the tension forces in these components and their 

direction that gives the building its strength. This dual feature 

(force and direction) defines a vector. 

Scalar and vector quantities 

Numerical measurement scales are in widespread use. It is 

important to be able to distinguish between two distinct types 

of measurement scales, scalars and vectors. 

Scalar quantities 

A scalar is a quantity that has magnitude (size) but no 

direction. For example, we measure the mass of objects using 
a variety of scales such as ‘kilograms’ and ‘pounds. These 

measures have magnitude in that more massive objects (such 
as the sun) have a larger numerical mass than small objects 
(such as this book). Giving the mass of this book does not, 

however, imply that this mass has a direction. This does not 

mean that scalar quantities must be positive. Signed scalar 

quantities, such as temperature as measured by the Celsius 

or Fahrenheit scales (which are commonly used) also exist. 

Vector quantities 

Some measurements have both magnitude and direction. 

When we pull on a door handle, we exert what is known 

as a force. The force that we exert has both magnitude (we 

either pull hard or we pull gently) and direction (we open 
or close the door). Both the size of the pull and its direction 
are important in determining its effect. Such quantities are 

said to be vectors. Other examples of vectors are velocity, 
acceleration and displacement. The mathematics that will be 

developed in this section can be applied to problems involving 
any type of vector quantity. 

Exercise 4.1.1 

The following situations need to be described using an 
appropriate measure. Classify the measure as a scalar (s) or 
a vector (v). 

1 A classroom chair is moved from the front of the room 
to the back. 

2. The balance in a bank account. 

3. The electric current passing through an electric light 

tube. 
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4. A dog, out for a walk, is being restrained by a lead. 

5. An aircraft starts its take-off run. 

6. The wind conditions before a yacht race. 

P ‘The amount of liquid in a jug. 

8. The length of a car. 

Representing Vectors 

Directed line segment 

There are a number of commonly used notations for vectors: 

Notation 1: 

This vector runs from A to Band is depicted A 
as AB or AB with the arrow giving the 
direction of the vector. Point A is known 

as the tail of the vector AB and point B is B 
known as the head of vector AB. 

— 
We also say the AB is the position vector of B relative to 
(from) A. 

In the case where a vector starts at the origin 

(0), the vector running from O to another 

point Cis simply called the position vector 
of C, OC or OC. 

Notation 2: 

Rather than using two reference points, A and 
B, as in notation 1, we can also refer to a vector 

by making reference to a single letter attached 

to an arrow. In essence we are ‘naming’ the 
vector. 

‘The vector a can be expressed in several ways. In text books 

they are often displayed in bold type, however, in written 
work, the following notations are generally used: 

‘We will consider another vector notation later in this chapter. 

Magnitude of a vector 

 



  

Similarly, if we are using vector notation 2, we may denote the 
magnitude of a by la| = a. 

Note then that |a| = 0. 

Equal vectors      

These aircraft must have equal velocity vectors if they are to 
‘maintain their formation. 

  

Notice that if @ = b, then vector b is a translation of vector 

a. Using this notation, where there is no reference to a fixed 

point in space, we often use the term free vectors. That is, free 

vectors are vectors that have no specific position associated 

with them. In the diagram below, although the four vectors 
occupy a different space, they are all equal. 

€ 

Note that we can also have that the c 
vectors AB = CD, so that although A 
they do not have the same starting 
point (or ending point) they are 

still equal because their magnitudes D 
are equal and they have the same B 
direction. 

Negative vectors 

The negative of a vector a, denoted by ‘-a’ is the vector a but 
pointing in the opposite direction to a. 

“/r 

Similarly, the negative of AB is -AB / 
or BA, because rather than starting at 
A and ending at B the negative of AB Be———A 
starts at B and ends at A. 5 A 

——i 

Note that |«| = |-al and AB| = |-AB| = |BA|. 

Zero vector 

The zero vector has zero magnitude, [0| = 0 and has no 

definite direction. It is represented geometrically by joining 
a point onto itself. Note then that for any non-zero vector a, 

la|>0. 

Orientation and vectors 

Vectors are useful when representing positions relative to 

some starting point. Consider: 

the position of a man who has walked 2.8 km across a field in 
a direction East 30° South or 

a car moving at 20 km/h in a direction W 40° N for 2 hours. 

Each of these descriptions 
can be represented by a 
vector. 

We start by setting up 

a set of axes and then 
we represent the above 

vectors  showing  the 
appropriate direction and 
magnitude. Representing 

the magnitude can be done 

using a scale drawing or 
labelling the length of the 

vector. 

  

    [ P 
Scale: | em: 10 km 
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We start by representing her journey using a vector diagram. 
The first part of her journey is represented by vector OA and 

the second partby AB. Note B 
then that because her final 
position is at point B, her final 

position, relative to O, is given 
by the vector OB. 

   
   Scale: Tem : | km 

4.0 km 

All that remains is to find W 
the direction of OB and its 

magnitude. To do this we 

make use of trigonometry. 

Finding |OB|:Using the cosine $ 
rule we have: 

OB? = OA? + AB? - 2(AB)(OA) cos(60°) 

=287+4.0°-2x28x4.0x0.5 

=12.64 

OB =3.56 

Next, we find the angle BOA: 

AB2 = OA2+0B2 -2(0A)(OB)cos(£BOA) 

4.02 = 2.82+ 12,64 — 2(2.8)(/12.64) cos (LBOA) 

_ 2.82+12.64 4.0 .cos(£ZBOA) 2(2-3)(m4) 

ZBOA = cos™!(0.2250) 
= 76°59'45” 
=77° 

That is, the bushwalker is 3.56 km E 47° N from her starting 
point. 

Although we will investigate the algebra of vectors in the next 
section, in Example 4.1.1 we have already looked at adding 
two vectors informally. That is, the final vector OB was 
found by joining the vectors OA and AB. Writing this in 
vector form we have, OB = OA + AB. 

To add two vectors, a and b, geometrically we 

1. first draw a, 

2. draw vector b so that its tail meets the arrow end of 
vector a, 

3. draw a line segment from the tail of vector a to the 
arrow end of vector b. 
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HAPTER 4 

'This vector then represents the result a + b. 

c 

/+":a+bb 

  

CA=-AC=-a. 

To get from B to C we first get from B to A and then 
from A to C. That is, we ‘join’ the vectors BA and AC. 
In vector notation we have: BC = BA +AC 

However, AB = h=BA = -AB = -} 

~BC=-b+a 

AB+BC = AC = a..|AB+BC| = |d| 

Exercise 4.1.1 

1. Using a scale of 1 cm representing 10 units sketch the 
vectors that represent: 

a 30 km in a westerly direction. 

b 20 newtons applied in a NS direction. 

c 15 m/s N 60° E. 

d 45km/h W 30°S. 

The vector ~< represents a velocity of 20 
m/s due west. Represent the following vectors: 

a 20 m/s due east 

b 40 m/s due west 

c 60 m/s due east 

d 40 m/s due NE



State which of the vectors shown: 7 

e 
¢ e 
—g | 

b 
f 
- / = 

a have the same magnitude. 

b are in the same direction. 

c are in opposite directions. 

d are equal. 

e are parallel. 

For each of the following pairs of vectors, find a + b. 

c d 
e /\;\ 
- 

“ a 

;b . 9. 

A 
For the shape shown, find a single vector which is 

equal to: B c 

a  AB+BC A 

b AD+DB b 

c AC+CD 10. 

d BC+CD+DA e CD+DA+AB+BC 

Consider the 
parallelogram shown 
alongside. Which of the 
following statements are b 

true? 

a  AB=DC b la] = [b] 

c BC = b d |AC+CD| = [b] 
Extra question 

e AD = CB 

  

For each of the following: 

i complete the diagram by drawing the vector 

AB+BC. 

ii find |AB+BC|. 

15 km c 

  

  

  

Two forces, one of 40 newtons acting in a northerly 
direction and one of 60 newtons acting in an easterly 
direction, are applied at a point A. Draw a vector 

diagram representing the forces. What is the resulting 

force at A? 

Two trucks, on opposite sides of a river, are used to 

pull a barge along a straight river. They are connected 

to the barge at one point by ropes of equal length. 
The angle between the two ropes is 50°. Each truck is 
pulling with a force of 1500 newtons. 

a Draw a vector diagram representing this 

situation. 

b Find the magnitude and direction of the force 
acting on the barge. 

Anaircraftis flying at 240 km/h in a northerly direction 

when it encounters a 40 km/h wind from: 

i the north. i the north-east. 

a Draw a vector diagram representing these 

situations. 

b In each case, find the actual speed and direction 

of the aircraft. 

 



Cartesian Representation of 

Vectors 

Representation in two dimensions 

‘When describing vectorsin 

two-dimensional space it 

is often helpful to make use 

of a rectangular Cartesian 
coordinate system. 

As such, the position 
vector of the point P, OP, has the coordinates (x, y). 

x 
The vector a can be expressed as a column vector (v) 5 

That is: 

Unit vector and base vector notation 

We define the unit vector 7 ~ | |I) | 

as the position vector of the point having coordinates (1, 0), 

and the unit vector / - | (‘7 \ 

as the position vector of the point having coordinates (0, 1). 

The term unit vector refers to the fact that the vector has a 

magnitude of one. 

  

i.e. the position vector of any point 
can be expressed as the sum of two 
vectors, one paralle]l to the x-axis 
and one parallel to the y-axis. 

The unit vectors i and j are also known as the base vectors. If 

we confine ourselves to vectors that exist in the plane of this 

page, the most commonly used basis is: 

J . where |l = il =1 
1 
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Notice the definite direction of the base vectors, i.e. i points 

in the positive x-axis direction while j points in the positive 

y-axis direction. 

Vectors can now be expressed in terms of these base vectors. 
  

  

cF2i-Bj 

  

  

  

  

  

":’M:VJ ~ 
  

i                         i   

The vector a is ‘three steps to the right and two steps up’ and 
can be written in terms of the standard basis as a = 3i+2j. 

The vector b is ‘one step to the left and three steps up. ‘One 

step to the left’ is in the opposite direction of the basis 

element i and is written —i, giving the definition of the 
vector b = —i+3j. The vectors —i and 3j are known as 

components of the vector b. 

The other definitions follow in a similar way. 

Representation in three dimensions 

When vectors are represented in three- 
dimensional space, a third vector must be 

added to the basis, in this case it is a unit ]- 

vector k and is such that the three unit i 

vectors are mutually perpendicular as 

shown. 

Inaddition, extra basis vectors can be added to generate higher 

dimensional vector spaces. These may not seem relevant to 

us, inhabiting as we do, a three dimensional space. However, 
it remains the case that it is possible to do calculations in 

higher dimensional spaces and these have produced many 
valuable results for applied mathematicians. 

As was the case for vectors in two dimensions, we can 

represent vectors in three dimensions using column vectors 

as follows: 

The position vector a = OP where P has coordinates 

(x, y, 2) is given by 

“HEDE-0-44 
= xi+yj+zk



  

‘Where this time the base vectors are: 

Vectors in three dimensions can be difficult to visualise. 

This diagram is a representation of the sum of vectors in three 
dimensions: 

  

The diagram shows: 

@LD+ (-L,L1) = (1,22) 

"The following QR code links to a 3 dimensional image of this 
calculation that you will be able to 'tumble’ in order to get a 
better idea of the geometry of the situation. 

='[m]      
3-d image 

  

Vector operations 

Addition and subtraction 

If a= (;i) = xji+y,j and b= Gz) =ity then: 

X, Ty _ ot 
ath = ("N 2)= VU = (k)i ()i (yu) (Yz Jrtyy) T CERIT Oy ER) 

% % 

If a=|y|=xityj+tzk and b=|y;| = xityj+tzk 

4 23 

then 

X)) (s X Ex, 

ath = |y |t|yy| = |y t0 

z) 2, 1z, 

= (r £x)i+ () £+ (2, £ 2k 

Scalar multiplication 

If a= ()= vty 

then ka = k(;) - (’;;) = kxithy , keR. 

x 
If a= [y] = xi+yj+zk then: 

z. 

X\ (ke 
ka = Ky|=|ky| = kei+kyj+kek , keR 

Z kz. 
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CHAPTER 4 

Vectors are added ‘nose to tail’: 

  

  

t\ la = pi+j 

/' bl i3 \ 

a=2i-j 

  

  

  

                            
a Vectors are added in much the same way as are 

algebraic terms. Only like terms can be added or 
subtracted, so thata + b = (2i—j) + (- i+ 3j) 

@-1)i+(-1+3) 
it2j 

b This problem is solved in a similar way: 

b—a = (-i+3j)-Q2i-j) 

= (=1-2)i+3-(-1) 
= _3i+4j 

Note that we could also have expressed the sum as: 

b-a=b+(-a) = (~i+3)+(-2i+j) 

= -3it4j 

(i.e. the negative of a vector is the same length as the original 
vector but points in the opposite direction.) 

c Combining the properties of scalar multiplication 
with those of addition and subtraction we have: 

3b-2a = 3(—i+3j)-2Q2i—j) 

= 30+ 9j-4it2 
= _7i+11j 
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3 2 3-2 1 

a Ppra=| 1|t 0 |T| 140 [T -1 
4 3 4+3 7 

3 2 3+1 4 
boop-L=| - o =] Sise |=| o 2 2 

4 3 4-15 25 

5 2 3 -3-3 -6 
c 534-P =15 0 |=| -1 =] o+1 |=| 1 

3 4 45-4 05 

  

The position vectors are: 

—y 
Lighthouse OL = —4i+3j and 

  

=R o s 
TOWHOT"Z'_SIA 

- = — 
Then, to get from L to T we have LT = LO+OT. 

— = 
= -OL+0T 
—(-4i+3j)+ (2i - 5)) 
4i-3j+2i-5) 

= 6i-8f 

" 

This means that the town is 6 km east of the lighthouse and 
8 km south,



Exercise 4.1.2 8. 

If @=i+7j—k and b = 4i+7j+5k ,find: 

a 4a b 3b 9. 

c 2a-b d 2(a-b) 

— 
Thepositionvectorsof AandBare OA = —3i +4j -2k 
and OB = i—4j—3k.Find: 

— — — 
a AO b OA -50B 

— — 
c -50A+30B d 30A +6BO 

=] 6 

If:p=| 2 |andg=| | | Find: 

4 2 

a pt2q b -3p-35¢q 

c 3p d 2p+3q 

Find the position vectors that join the origin to the 
points with coordinates A (2,-1) and B (-3, 2);E)xpress 

your answers as column vectors. Hence find AB . 

A point on the Cartesian plane starts at the origin. 
The point then moves 4 units to the right, 5 units up, 6 10. 
units to the leftand, finally 2 units down. Express these 

translations as a sum of four column vectors. Hence 

find the coordinates of the final position of the point. 

Two vectors are defined as @ = i+j+4k and 

b = —7i-j+2k . Find: 

a —6a-2b b ~5a+2b 

c 4a+3b d ~2(a+3b) 

4 4 
Ifx=| _4 |andy = | 3 |,findas column vectors. 

2 7 

a 2x+3y b 

c 5x—6y d 

Find the values of A and B if: 

A(7i+7j+4k)-3(3i—j+Bk) = -37i-25j+5k 

Answers 

VECTORS 

  

Find the values of A and B if: 

A(Ti+7j+4k)~3(3i-j + Bk) = —37i-25j+ 5k 

Two vectors are defined as: 

-3 6 

a=| | |andb=| ¢ 

4 =5 

to: 

-12 

c 24 

1 

A submarine (which is considered the origin of the 

vector system) is 60 metres below the surface of the 

sea when it detects two surface ships. A destroyer (D) 

is 600 metres to the east and 800 metres to the south of 

the submarine. An aircraft carrier (A) is 1200 metres 

to the west and 300 metres to the south. 

a Define a suitable vector basis for this problem. 

b Using the submarine as the origin, state the 
position vectors of the destroyer and the aircraft 
carrier. 

c A helicopter pilot, based on the aircraft carrier, 

wants to make a supplies delivery to the 
destroyer. Find, in vector terms, the course 

along which the pilot should fly. 

 



  

Application 

Crosswind Landing 

This small aeroplane is landing at a short grass landing strip 

on a coral atoll. 

It appears that the aeroplane is heading almost straight for 

the camera. 

  

Fortunately for the photographer, this is not so. The aircraft is 
appraching the landing strip ‘crabwise’ in order to offset the 
drift created by a cross wind. 

Ke
mu
ny
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The vectors concerned are: 

1. Wind 

The crosswind is coming from the pilot's right and resolves 
into a component straight down the runway (green) and a 

component across the runway (blue). 

Wind 5 
vector, E 

s 8 
ER 
g > 
T 

Crosswind 

vector 

% ‘The aeroplane 

     i 
£ 
g 4 

2 S 
3 g 
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JO
 
UO
NI
RM
IQ
 

v 
< 
g 
o < 

=5 

     
Crosswind 

vector 

The crosswind component of the red vector balances the blue 

vector and the aeroplane travels straight down the runway. 

Without this, the aeroplane would drift off the runway line 
to the pilot's left during the approach. Just before touchdown, 
the pilot will straighten the aeroplane by using left rudder 

to 'yaw' it to the left. Some right aileron is also necessary to 

counteract the roll that happens during this 'de-crabbing'. 

Can you see why?



  

Definition of the Scalar Product 

he scalar product (or dot product) of two vectors is 

defined by: 

where 0 is the angle between the two 
vectors and may be an obtuse angle. The 
angle must be measured between the 

directions of the vectors. That is, the angle 
between the two vectors once they are 

joined tail to tail. 

B
 

a Q 

The three quantities on the right-hand b 
side of the equation are all scalars and it 
is important to realise that, when the scalar product of two 
vectors is calculated, the result is a scalar. 

Let @ = 2i-3j+k and b = i+j—k ,then to determine the 

scalar product, a e b, we need to find: 

lal, 18] and cos®, where @ is the 

angle between a and b. 

> Finding: 

la] = J22+(=3)2+12 = /14, o # 

1Bl = 12412+ (-1)2 = 3. 

Finding cos® requires a little work. Relative to a common 
origin O, the points A(2, -3, 1) and B(1, 1, -1) have position 

vectors @ and b. 

Before making use of the cosine rule we need to determine 
the length of AB. Using the distance formula between two 
points in space, we have: 

AB = J(1-2)2+(1-(=3))2+(-1-1)2 

= JT+16+4 

=2 
Cosine rule: 

AB2 = OA2+0OB2-2-0A-OB - cos 

(V21)2 = (J14)% +(3)}—2- T4 .3 - cos 

21 = 14+3-24/42c0s8 
2 
N ~.cos@ 

Next, from the definition of the scalar product: 

aeb = |a||b|cos6, we have 

a-b=./l_4xfi>< 

  

The solution to Example 4.2.1 was rather lengthy. However, 

we now look at the scalar product from a slightly different 
viewpoint. 

First consider the dot product iei: 
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Using the definition, we have that 

iei = |illilcos0 = 1x1x1 =1 

(the angle between the vectors i and i is 0 and so cosf = 
cos0 =1). 

Next consider the product i ej: 

Using the definition, we have that: 

ioj=|illflcos90 = 1x1x0 =0 

(the angle between the vectors i and j is 90° and so cosf = 
€0s90° = 0). 

Sinxiiarl)a we end up with the following results for all possible 
combinations of the i, j and k vectors: 

and 

Armed with these results we can now work out the 
scalar product of the vectors @ = xji+y,j+zk and 
b = xyi+y,j+ 2,k as follows: 

aeh = (xyi+yj+zk)e(xyi+yy+zyk) 

= xpxy(ie i) Fxpy(ic ) +x 2 k) 

e DFryaleN) Hyz0 0 k) 
+zix5(k e i)tz (ke j) 2250k 0 k) 

aeb = xxy+y v, +zyz, 

That s, if: 

Using this result with the vectors of Example 4.2.1, 2i - 3j + k 
and i+j—k we have: 

Qi-3j+k)s(i+j—k) = 2x1+(=3)x 1+1 x(-1) 
=2-3-1 
=2 

This is a much faster process! 

However, the most usual use of scalar product is to calculate 
the angle between vectors using a rearrangement of the 
definition of scalar product: 
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a In using the scalar product, it is necessary to calculate 
the magnitudes of the vectors. 

|-i+3j = J(=1)>+32 = /10 and 

lit+2jl = 12422 = .5 
T 

Next, calculate the scalar product: —7 +U 

(—i+3j)e(=it2j) = —1x-1+3x2 =17 

  . - _ash_ 1 R Finally, the angle is: cos lH - Tox 5 =6~8 

b 
0 
5 | = 0T (524 = Ja 
4 

-5 

and o1 || = NP2 (3)2 = 35 
-3 

Next, the scalar product: 

0 =5 

=5 |*] =1 [ = 0X(=5)+(-5)x(~1)+4x(=3) = -7 

4 3 

Finally, the angle can be calculated: 

cosf = & 0=101° L 
ol /3T 55 

The use of cosine means that obtuse angles between vectors 
(which occur when the scalar product is negative) are 

calculated correctly when using the inverse cosine function 
on a calculator.



Properties of the Scalar Product 

Closure The scalar product of two vectors is a scalar (i.e. 
the result is not a vector). The operation is not closed and so 

closure does not apply. 

Commutative 

Now,ae b = |al|blcos® = |b|lalcos® = bea 

That is, @S BI=TBa. 

‘Therefore the operation of scalar product is commutative. 

Associative If the associative property were to hold 
it would take on the form 
(aeb)ec = ae(bec). However, a®b is a real number 

and therefore the operation (a ® ) ¢ has no meaning (you 
cannot ‘dot’ a scalar with a vector). 

Distributive The scalar product is distributive (over 

addition). 

‘We leave the proof of this result as an exercise - it was assumed 

in the discussion on the previous page. 

Identity As the operation of scalar product is not closed, an 
identity cannot exist. 

Inverse As the operation of scalar product is not closed, an 
inverse cannot exist. 

Note that although the scalar product is non-associative, the 
following ‘associative rule’ holds for the scalar product: 

If ke R, then, ae (kb) = k(aeb) 

Special cases of the scalar product 

Perpendicular vectors 

If the vectors @ and b are perpendicular then: 

aeh = |a||blcoslz‘ =0. 

(Note: We are assuming that a and b are non-zero vectors.) 

Zero vector 

Forany vectora, a«0: a*0 = [af[0[cos6 = 0 

  

Parallel vectors 

If vectors @ and b are parallel then, a b = |allb|cos0 = |allb| 

If a and b are antiparallel then, a5 = |al[b|cost = —lall| . 

(Note: We are assuming that a and b are non-zero vectors.) 

Combining the results of 1 and 2 above, we have the important 
observation: 

If asb = 0 then either: 

L aand/or b are both the zero vector, 0. 

2. aand bare perpendicular with neither a nor b being 
the zero vector. 

Notice how this result differs from the standard Null Factor 

Law when dealing with real numbers, where given ab = 0 then 
aor bor both are zero! That is, the cancellation property that 
holds for real numbers does not hold for vectors. 

A nice application using the perpendicular property above 
can be seen in the next example. 

  
a Axthorp is 3 km east and 9 km north of Oakham so 

OA = 3i+9j 
— = — 

b OB = OA +AB = 3i+9j+5i-5j = 8i+4j 
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c 8 = 204) - 2Givoj) - 2ive 

BS = BO+0S = —(8i+4j)+2i+6j = —6i+2j 

d The next step is to calculate the angle between 0s 
and BS by calculating the scalar product of the two 
vectors: 

— = 
OSeBS = (2i+6j)e(~6i+2j) =2X(-6)+6x2 =0 

— 
‘This means that O3 and BS are at right angles to each other. 
It follows that the bus stop is the closest point to Bostock on 
the Oakham to Axthorp road. 

As the two vectors are perpendicular, then: 

(2mi+mj+8k)e (i+3mj—k) = 0 

=2m+3m>-8 =0 

©3m>+2m-8 =0 

S @m-4)(m+2) =0 

am=§-orm=—-2 

Let the vector perpendicular to # = 4i—3j be v = xi +yj. 

Then,as u Lv=>uev = 0 sothat (4i—3j) e (xi+yj) = 0 

S4x=3y =0 - 

Unfortunately, at this stage we only have one equation for 
two unknowns! We need to obtain a second equation from 
somewhere. To do this we recognise the fact that if v is 
perpendicular to u, then so too will the unit vector, v, be 
perpendicular to u. 

Then,as ¥ = 1 =2 Jx2+y2 = 1.x2+)2 = 1 —(2) 

From (1) we have that y = gx -(3) 
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Substituting (3) into (2) we have: 

2 
2+(h) = 1o = sex-4 

Substituting into (3) we have: y = :tg 

Therefore, both v = %H%i and v = «Gx +§/) are 
perpendicular to u. 

  

From the triangle rule for vector addition we have 
atc=bee=b-a. 

Now, using the scalar product we have: 

cec=(b-a)e(b-a) 

=beb-bea-aebh+aca 

= [b2—2aeb+|a? 

~lel2 = b2 + |a]? - 2]a||B] cos® 

  

Let the vector ¢ = xi+ yj+zk be perpendicular to both a 
and b. 

‘Then, we have that e c = 0 and bec = 0. 

From a e ¢ = 0 we obtain: 

Qi+j—k)o (xi+yj+zk) = 2x+y-z =0 -(1) 

From be ¢ = 0 we obtain: 

(i+3j+k)e(xi+tyj+zk) = x+3y+z=10 -(2) 

In order to solve for the three unknowns we need one more 
equation. We note that if ¢ is perpendicular to a and b then so 

too will the unit vector, ¢. So, without any loss in generality, 
‘we can assume that ¢ is a unit vector. This will provide a third 
equation.



As we are assuming that ¢ is a unit vector, we have: 

lel = 1ox2+y2+x2 =1 -(3) 

‘We can now solve for x, y and z: 

M)+ @) Bty =0 

2x(1) - (2): Sy+3z=0-(5 

- . (AN, 5 (5N 
Substituting (4) and (5) into (3): V] + ) = 1 

& 16p2+9y2+252 = 9 

=502 =9 

3 ey = g2 
Y 

sy= iw 
= 10 5 

Substituting into (4)and (5) wehave x = —gxiél—oz = t25_2 

5,432 _ B z = —2x+28 = 4 and z 3%+, . 

Therefore, 1232 + %/‘ + gk or t(z—sf—zif%p gkj 

  

are two vectors perpendicular to a and b. Of course, any 

multiple of this vector will also be perpendicular to a and b. 

e = ] 

As we have already seen in Example 4.2.6, the scalar product 

is a very powerful tool when proving theorems in geometry. 

We now look at another theorem that is otherwise lengthy to 
prove by standard means. 

Consider the triangle ABC A 

as shown, where M is the 

midpoint of the base BC. 
Next, let a= AB b 

and b = AC. We then wish 

to show that AM LBC (or 

AMeBC = 0). 

B M 

Now, AM = AB+BM = AB+1BC 

  
c 

  

= a+%(b—n) 

= %(n +b) 

‘Therefore, AM ¢ BC = %(n +b)e(b—a) 

= %(a-bfa-ai-b-bfb-a) 

= %(— a2+ |b]2) (because a*h = hea) 

= 0 (because |a| = |5]) 

Therefore: 

As AM#0 and BC#0, then AM ¢ BC = 0= AM L BC 

i.e. the median is perpendicular to the base. 

e e e e i S A P 

Most graphic calculators can perform vector calculations. 

You should know how to do the basic procedures such as 

entering and saving vectors. 

       

           

   

  

S 

    

Matrix 
Number of rows 

Number of columns [:I 

|€|:| |cancel| 

19: Column A 
A: Construc 
      

  

  

& 
dotp(a,b) 2 
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If using Casio, select Module 1. 

[AIN MENU 

ConicGraphs Equation 

If using the Run mode (1): 

Vectors can be entered as needed and arithmetic performed 
on them by pressing F4-MATH and F1-MAT/VCT. This 

provides a screen from which common vector (and matrix) 

layouts can be accessed and basic operations performed. 

If using 2 by 1 vectors, a blank vector of the right size can be 
found by pressing F4. The values can now be entered from 
the keyboard. 

§ GoEiEs] GE 

-23] _3"[ _12] 

  

  

   

  

O 

    [2X2]13X3 [ nxn | 2x1 | 3x1 [H=N] 

  

  

Many applications will make use of the same vectors. 

These can be entered (still in Run mode) by using F3-MATH/ 

VCT. 

This opens a screen for defining matrices and vectors. 

  

Matrix 
Mat A 
Mat B 
Mat C 
Mat D 
Mat E 
Mat F 

A 3 by 1 vector can now be entered as Mat A 
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    ROW-0P] ROW JCOLUMN/ND]N 
  

-1 

If a second vector is stored | 2 |, 
4 

both can be accessed repeatedly to perform calculations. 

The vector A is accessed by pressing OPTN, F2, F1 followed 
by ALPHA A to name the vector. 

[Hath) (d7c)Real 
2xMat A-3xMat B 

  

   

  

O 

    [ Mat at>Lstl Det | Trn JAusnent| 
  

Scalar product calculations can be found by scrolling twice 
(using F6) to the right and pressing F2. 

B HatiRedforn]) (d/c)Real 
DotP(Mat A,Mat B) 

O 

  

  

-4 

DR EE R R > ]      



Exercise 4.2.1 

Find the scalar product, @ ¢ b, for each of the following: 

  

alal =2 b 

bl =4 
- ,‘ a0° 

e b 
| | 

c | la] =5 

| o =10 
300 4. 

b 

Find the scalar products of these pairs of vectors. 

a 3i+2j and 2i +3j 

b 3i+7jand XY 5. 

c 3i-j and 2i+2j 

d 6i+j—k and —7i—4j+3k 

e —j+5k and —4i+j+k 

f —i+5j+4k and Si-4k 
6. 

0 7 

g 6 |and| 2 
1 -6 

28 3 

h -1 |and| 2 

7 1 

-6 7 

i -1 |and| 3 7 

7 S 

8. 

Find the angles between these pairs of vectors, giving 

the answers in degrees, correct to the nearest degree. 

a —~4i—4j and -3i+2j 9. 

b i—j and 3i+6j 

c —4i-2j and -i-7j 10. 

d  —7i+3jand -2i-j 
11. 

e i+3j+7kand 6i+7j—k 

  

£ j+3kand —j-2k 

43 4 
g ~1 |and| 5 

=5 =5. 

-2 5 

h 7 |and| 2 

=F -5 

Two vectors are definedas @ = 2i+xj and b = i—4j 

Find the value of x if: 

a the vectors are parallel. 

b the vectors are perpendicular. 

If a=2i-3j+k, b=-i+2j+2k and ¢ = i+k, 

find, where possible, 

a aeb b (a=b)ec 

c aebhec d (a—b)e(a+b) 

e 4 £ be0 
(4 

If @a=2i-.3, b=Bi-j and ¢ = i+j, find, 
where possible: 

a ae(b+c)+be(c—a)+ce(a-b) 

b (b—c)e(c—b)+|b> 

c 2lal> - feec 

  

Find the value(s) of x for which the vectors xi+j—k 

and xi - 2xj -k are perpendicular. 

P, Q and R are three points in space with coordinates 

(2, -1, 4), (3, 1, 2) and (-1, 2, 5) respectively. Find 
angle Q in the triangle PQR. 

Find the values of x and y if u = xi+2yj-8k 
is perpendicular to both v =2i-j+k and 

w=3i+2j-4k 

Find the unit vector that is perpendicular to both 

a=3i+6j—k and b = di+j+k. 

Show that, if u is a vector in three dimensions, then 

u=(uei)i+(uejj+(uekk. 
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14. 

15. 

16. 

17.a 

18. 

19. 

20 
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a Find a vector perpendicular to both 
a=—i+2j+4k and b = 2i-3j+2k, 

b Find a vector perpendicular to 2i+j -7k . 

Show that if |@—b| = |a+ 5|, where a0 and b#0, 
then a and b are perpendicular. 

Ifaeb = aec wherea|0|b,what conclusion(s) can 

be made? 

Using the scalar product for vectors prove that 
the cosine of the angle between two lines with 
direction cosines /. my. 7y and Iy, my, n, is given by 
cos® = [1ly+mymy+nyn,. 

Find the cosine of the acute angle between: 

a two diagonals of a cube. 

b the diagonal of a cube and one of its edges. 

On the same set of axes sketch the graphs of: 

x+3y-6=0and2x-y+6=0, 

clearly labelling all intercepts with the axes. 

b Find a unit vector along the line: 

i x+3y-6=0. 

i 2x-y+6=0. 

c Hence find the acute angle between the two 
lines x + 3y - 6=0and 2x -y +6=0. 

Find a unit vector a such that @ makes an angle of 
45° with the z-axis and is such that the vectori - j + 
a is a unit vector. 

Using the scalar B 
product for vectors 

prove Pythagoras’s ¢ a 
Theorem for the 
triangle ABC shown. riangle ABC shown. % e 

b 

A 

Prove that an angle 
inscribed in a semicircle is 
aright angle. B 0 C 

   

      

21.  In  the trapezium E 

shown, BE:BC = 1:3. 

D 

Show that 3AC ¢ DE = 2(4m>—n?) 

c 

where [AB| = m, DC| = 2|AB| and [DA| = » 

22.  Prove that the altitudes of any triangle are concurrent. 

23.  Anoil pipeline runs from a well (W) to a distribution 

point (D) which is 4 km east and 8 km north of the 

well. A second well (S) is drilled at a point 9 km east 

and 7 km south of the distribution point. It is desired 

to lay a new pipeline from the second well to a point 

(X) on the original pipeline where the two pipes will be 
joined. This new pipeline must be as short as possible. 

a Set up a suitable vector basis using the first well 
as the origin. 

— — = 
b Express WD, WS, DS in terms of your basis. 

c Write a unit vector in the direction of WD . 

d If the point X is d km along the pipeline from 

the first well, write a vector equal to WX. 

— 
e Hence find the vector WX such that the new 

pipeline is as short as possible. 

Link to a 3-d visualisation of two vectors, 

the plane in which they exist and a vector 
perpendicular to this plane. 

Answers 

 



  

Vector equation of a line in two 

dimensions 
We start this section by considering the following 

problem: 

Relative to an origin O, a house, situated 8 km north of O, 

stands next to a straight road. The road runs past a second 
house, located 4 km east of O. If a person is walking along 
the road from the house north of O to the house east of 
O, determine the position of the person while on the road 
relative to O. 

‘We start by drawing a diagram 

and place the person along 

the road at some point P. 

We need to determine the 

position vector of point P. 

We have: 

r=0P = OA+AP 

Now, as P lies somewhere along AB , we can write: 

AP =/ AB , where 0<A<1, so that when A =0 the 

person is at A and when A = 1 the person is at B. 

Next, AB = AO+OB = -8j+4i ,and so we have: 

= 84 M-8 +4i) 

This provides us with the position vector of the person while 

walking on the road. 

‘We take this equation a little further. The position vector of P 

  

can be written as r = xi+yj and so we have that 

vityj = &+ M-8 +4i) 

That is, we have xi+yj = 4hi+(8—84)j meaning that 

x =4k and y = 8-8) 

The equations x = 4% —(1)and y = 8- 8L - (2) are known 

as the parametric form of the equations of a straight line 

Next, from these parametric equations, we have 1 = % -(3) 
and A = % -(4) 

)-8 x 
Then, equating (3) and (4) wehave 7 ~ g . Thisequation s 
known as the Cartesian form of the equation of a straight line. 

We can go one step further and simplify this last equation. 

  

y-8 L eax=y-8oy=-2+8 

which corresponds to the straight line passing through A and 

B. 

This approach g e 

to describe the 

position  of an 

object (or person) 
is of great value 

when dealing with 

objects  travelling 

in a straight line. 
When planes are 

coming in for 
landing, it is crucial that their positions along their flight 

paths are known, otherwise one plane could be heading for a 

collision with another plane in the air. 
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CHAPTER 4 

‘We now formalise the definition of the vector equation of 
aline in a plane: 

‘The vector equation of a line L in the direction of the vector b, 
passing through the point A with position vector a is given by 

1 =a+ Ab where \ is a scalar parameter. 

    0O x 
‘The vector equation of a line L in the direction of the vector 
b, passing through the point A with position vector a is given 
by: 

where ) is a scalar parameter. 

Proof: 

Let the point P(x, y) be any point on the line L, then the 
vector AP is parallel to the vector b. 

r= 0P 

= OA+AP 

r=a+\b 

So the equation of L is given by r = a+1b as required. 

‘We can now derive two other forms for equations of a line. 
We start by letting the coordinates of A be (a;,a,) , the 

coordinates of P be (x, y) and the vector 5 = (z‘) « 
2, 

From r = a+1b we have: 

6)- @ 60=0)- (%) 
This provides us with the: 

Parametric form for the equation of a straight line: 

Next, from the parametric form we have: 

  x=athbexa = e = (1) 
1 

and  y=ariher-g=iher=T0 ) 
2 
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Equating (1) and (2) provides us with the: 

Cartesian form for the equation of a straight line: 

  

The vector equation of the line L is based on finding (or 
using) any point on the line, such as (0,8) , and any vector in 
the direction of the line L, such as [Jl) s 

The position vector of any point R on the line can then be 

writtenas r = (g)+ k( ll) § 

As A varies, different points on the line are generated, and 

conversely any point on the line has a corresponding value of 

. For example, substituting A = 3 gives the point (3,5) and the 
point (8,0) corresponds to A = 8. 

NB: the vector equation (in parametric form) is not unique. 

The equation r = £§ + ”225 is an equally valid description 
of the line, and in this case substituting A = 0.5 generates the 
point (3,5). 

Rather than depend on a 
standard formula, it is always 

helpful to visualise problems 
such as these, in particular, 
when we move onto straight 
lines in space. We draw a general 
representation of this situation 

and work from there. 

 



  

Let the point P be any point on the line L with position vector 

r,then OP = OA +AP 

However, as A and P lie on the line L, then AP = A(3i-4j) . 

Therefore, r = (2i+5)+A(3i-4j) 

This represents the vector equation of the line L in terms of 

the parameter A, where AR . 

Theequation couldalsobe writtenas, r = (2+3A)i+(5-4M)j 

  

We start with a sketch of the situation described: 

Let the point P be any point 

on the line L with position 

vector r, then AGA) P,y 

B, 8) 

  

   

  

OP = OA+AP - 

Then, as : 

AP AB= AP = /AB 

where L€ R. 

This means that we need to find the vector AB which will be 
the vector parallel to the line L. So, we have 

wn=savon ()3 ()- ) 
Therefore, from OP = OA+AP we have 

op - (l]‘)+kx4(:) 

r= G)HG) where 1 = 4% 

This represents the vector equation of the straight line L. 

That is, 

To find the parametric form of L we make use of the equation: 

— (1 1 r= ()0 
As P(x, y) is any point on the line L, we write the vector 

equation as: 

6640, 

From where we obtain the parametric equations, x = 1+1¢ 

and y = 4+1. 

To find the Cartesian form of L we now make use of the 
parametric equations. 

From x = 1+ wehave 1 = x—1 —(1) and from y = 4+1 

we have 1 = y-4 - (2) 

Then, equating (1) and (2) we have x-1=y-4 (or 
y=x+3). 

  

   ) = 0)+(Z) = Q)+H3) whichisinthe 

form r=a+ib ). 

The direction of the line L is provided by the vector b, i.e. 
2 
—5® 

To find the unit vector we need \(_25)| = JA+25 =29 . 

(3 
Using the point P(x, C) as representing any point on the line 

  

L, we have that r = (¥) . 

Therefore, we can write the vector equation as (;) = G tgi) 

From this equation we then have: 

x=3+21 -(1)and y=5-5L -(2) 

We can now find the Cartesian equation by eliminating the 
parameter A using (1) and (2). 

  

From (1): 

From (2): a=tz 

Therefore, 23 
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1 If finding the angles between two vectors, then the 
answer can either be acute or obtuse depending on the 
original arrangement between the two vectors. 

2 If finding the angles between two lines, the answer 
should be stated as an acute angle, since we will “create” 
two vectors from the lines and hence, depending on 
how we have created the vectors, the angle may be 

obtuse or acute. 

‘We must first express the lines in their vector form. To do this 
we need to introduce a parameter for each line. 

= A giving the parametric equations: 

  

x=2+44)k and y = —1+3% . 

‘We can now express these two parametric equations in the 

vector form: 

()= () - (B)6) 
This vector equation informs us that the line x%Z = %1 is 

parallel to the vector (2) . 

In the same way we can obtain the vector equation of the line: 

t2_y4_, giving the parametric equations: 

x=-2-tand y=4+2r. 

From here we obtain the vector equation: 

()= 63 = @G)- 
This vector equation informs us that the line *%]2 = y%A is 

parallel to the vector (;‘) < 

To find the angle between the two lines we use their direction 
vectors, (‘3‘) and (‘2‘) along with their scalar product: 
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()G =100 
= —4+6 = 16+9x JT+4cosd 

& cosh = 2 
5.5 

= 79242’ 
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Exercise 4.3.1 

1. For the straight line with equation r = a+1b where 
a=i+2 and b= -2i+3j ,find the coordinates of 

the points on the line for which: 

i r=0 ii A =3 iii A=-2 

Sketch the graph of  r = i+2j+M-2i+3j) 

2. Find the vector equation of the line passing through 

the point A and parallel to the vector b, where: 

a A=(25), b =3i-4j 

b A=(3,4), b=-i+5) 

c A=(0,1), b =Ti+8j 

d A=(1,-6) , b =2i+3j 

o As(-L,-1) , b = Gg) 

=y
 A=(1,2), b= G) 

3. Find a vector equation of the line passing through the 
points A and B where: 

a A(2,3), B(4,8) 

b A(1,5), B(-2,1) 

¢ A(4.-3), B(-1.-2) 

4. Find the vector equation of the straight line defined by 
the parametric equations: 

a x=9+Ay=5-3\ 

b x=6-4ty=-6-2t 

c x=-1-4ry=3+8% 

d x=]+%p,y=2—§u



  

5: Find the parametric form of the straight line having 

the vector equation: 

(T (-3 
" (4) (5) » o)) v 

o () @ - 
6. Find the Cartesian form of the straight line having the 

vector equation: 

o “ il 
G
 

&
 T = N
 

o
S
 

2
3
 

n
Y
 

a6 
e P (Z]+ A((l)) 

% Write the following lines in vector form: 

4 O i pr= x5 
y=3 

. 2y-x=6 

8. Find the position vector of the point of intersection of 

each pair of lines: 

7= () () and = (3)nll) 
= (§)2(3) and r= (3)()) - 

9 Find the equation of the line that passes through the 

point A (2, 7) and is perpendicular to the line with 

equation r = —i—3j+A(3i-4j) 

10.  Let the position vectors of the points P(x;,v,) and 

Q(x5.37) be p and ¢ respectively. 

Show that the equation r = (1-A)p+hq represents 

a vector equation of the line through P and Q, where 

reR. 

Extra questions 

  

Lines in three dimensions 

In three-dimensional work always try to visualise situations 
very clearly. Because diagrams are never very satisfactory, it 

is useful to use the corner of a table with an imagined vertical 

line for axes; then pencils become lines and books or sheets 

of paper become planes. 

It is tempting to generalise from a two-dimensional line like 
x+y =8 and think that the Cartesian equation of a three 
dimensional line will have the form x + y + z = 8. This is not 

correct - as we will see later this represents a plane, not a 

line. 

  

We approach lines in three dimensions in exactly the same 

way we did for lines in two dimensions. For any point P(x, y, 

2) on the line having the position vector r, passing through 

the point A and parallel to a vector in the direction of the line, 
b say, we can write the equation of the line as r = a + \b. 

So, for example, the line passing through the point (4, 2, 5) 

and having the direction vector i - j + 2k can be written as: 

4 1 

r=| 2 |+4| -1 

5 2 

Or, it could also have been written in £, j, k form as 

r=4i+2j +5k +\(i - j +2k) 

As for the case in 2-D, the parametric form or Cartesian form 
of the equation is obtained by using a point P(x, y, z) on the 
line with position vector: 

x % 4 1 
r=| y |[sothat| y |=| 2 [+4] -1 

z z 5 2 

From here we first get the parametric equations: 

x=4+ky=2-handz=5+2% 
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Solving each of these for A, we get: 

z=5 
A=x—4=2-y="— 

7 4 

The parameter A plays no part in the Cartesian equation, so 
we drop it and write the Cartesian equation as: 

z-5 
x—4=2-y=—. = 

Itis important to be clear what this means: if we choose x, y 
and z satisfying the Cartesian equation, then the point P(x, 
¥, 2) will be on the line. 

For example x = 10, y = -4 and z = 17 satisfies the Cartesian 
equation, and if we think back to our original parametric 
equation we can see that: 

10 4 1 

-4 |=| 2 [+6] -1 

17 5 2 

To convert a Cartesian equation into parametric form 
we reverse the process and introduce a parameter A. For 
example if the Cartesian equation is: 

x=1_py+2 

2 

z-6 
4 wewrite: 

y+2 

    2 

x=1+434 

y=-2+27 

Z2=6+42 

1 3 

r=| =2 |+4| 2 

6 4 

You will probably have noticed the strong connection 
between the numbers in the fractions in the Cartesian form 
and the numbers in the vectors in the parametric form. 

Consider the Cartesian form of any straight L passing 
through the point P(x,.y,.z)) : 

From this equation we obtain the parametric form of the 
straight line: 
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which then leads to the vector form of the straight line: 

‘Thatis, the denominators of the Cartesian form of a straight 
line provide the coefficients of the directional vector of the 
line. This is an important observation, especially when 
finding the angle between two lines when the equation of 
the line is provided in Cartesian form. However, rather 
than simply committing this observation to memory, it is 
always a good idea to go through the (very short) working 
involved. 

We start by sketching the line: 

  

‘The direction vector of 

the line is 3i-2j+k 

and as the line passes 

through the point 
(4, 6, 3), the vector 

equation of the line is 

given by 

  

r = (4i+6j+3k) +A(3i-2j+k) 

From the vector equation we obtain the parametric form of 
theline: x = 4+3%y = 6-24 and z =3+% 

From these equations we have, 2 =% = = _Lzfi and 
    

  

Then, eliminating A we have A;%fl = Z_TJ or 

T i 5 3 = z-3 

which represents the Cartesian form of the line.



  

We make a very rough sketch — 

there is no point in trying to 
plot A and B accurately. Let the 
position vector of any point P 

on the line be r. O 

Then the vector form of the line is r = OA + AAB. 

Now, OP = r = OA+AP . 

But AP =/AB .. r=0A+/AB and 

AB = AO+OB = -0OA+0OB 

2 4 2 
AB=—| 1 |+ 0o |=| -1 |andso, 

1 3 2 

2 2 

r=[ 1 |[+A[ -1 
1 2 

  

Because the lines are given in their standard Cartesian form, 
we know that the denominators represent the coefficients of 

the direction vectors of these lines. As the angle between the 
lines is the same as the angle between their direction vectors 

we need only use the direction vectors of each line and then 

apply the dot product. 

For L, the direction vectoris b, = 2i—j+./3k and for L, 
itis by = i+j+3k . 

Using the dot product we have: 

by e by = |by||by|cos® 

(2i—j+ Bk) e (i+]j+ S3k) = B x f5c0s0     

2-1+3 = J40cosd 

cosh = - 
a0 

50 = 50°46" 

T e T T e T S Al 

  

xHl_4-y_ 
From the Cartesian form of the line 53 
(say) we obtain the parametric form: 

x=-1+3\y=4-2 andz=X\ 

We can then write this in the vector form 

r=—i+4j+\3i-2j+k). 

Comparing the direction vectors of the two lines we see that: 

—6i+4j- 2k =-2(3i - 2j + k) 

and so the direction vectors (and hence the lines) are parallel. 

It is worth emphasising, that lines will be parallel or 

perpendicular if their direction vectors are parallel or 

perpendicular. 

1. If the two lines are perpendicular we have 

byeby, = 0=x 0, vy yy+22, = 0 

2. If the two lines are parallel we have 5, = mb,, m#0 

  
We first need to determine direction vectors for both L and 

M. 
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For L: Let the points be A(4, 3, 9) and B(7, 8, 5), then a 
direction vector for L, 

7-4 3 
b, (for example), is given by b, = [8—3] = [ ] . 

For M: 
5-9 -4 

Let the points be X(12, 16, 4) and Y(k, 26, -4), then a 

direction vector for M, 

k-12 k- 12 
b, (for example), is given by b, = {zef m] = [ 10 } . 

a 

‘| -4 

—4-1 -8 
If LIIM we must have that b, = cb,,ce R. 

  

      

3 k—12 

5]'{ 10 }: 0=3(k-12)+50+32 =0 

@3k =46k = -—— 

Exerci 
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ise 4.3.2 

Find the vector form of the line passing through the 
point: 

a A(2, 1, 3) which is also parallel to the vector 

i-2j+3k . 

b A(2, -3, -1) which is also parallel to the vector 

=2i+k. 

Find the vector form of the line passing through the 

points: 

a A(2.0,5) and B(3,4,8) . 

b A4(3,-4,7) and B(7,5,2) . 

€ A(-3,4,-3) and B(4,4,4) . 

    

  

3. Find the Cartesian form of the line having the vector 

form: 

() 3 

3 5; 

-2 5 0 1 

b r:{3]+/[0J c I:[U]t{l] 
) 0 1 

4. Find the Cartesian equation of the line passing through 
the points A(5, 2, 6) and B(-2, 4, 2). Also, provide the 

parametric form of this line. 

5 For the line defined by the parametric equations 
x=3+2t,y=4-3t and z=1+5¢, find the 

coordinates of where the line crosses the xy-plane. 

6. Convert these lines to their parametric form: 

=2 
a %:y—s:z(z—‘;) 

4-z 
b === 

s 2 

c 

d 2x-2 _3-y 2z-4 

4 -2 1 

# Convert these lines to their Cartesian form: 

4 3 

2) 2 

b r=2i+k+u(-3k) 

Extra questions 

Answers  



  

Intersection of two lines in 3-D 

Two lines in space may: 

L intersect at a point, or 

2. be parallel and never intersect, or 

3. be parallel and coincident (i.e. the same), or 

4. be neither parallel nor intersect. 

f the above scenarios, the first three are consistent with 

our findings when dealing with lines in a plane (i.e. 2-D), 

however, the fourth scenario is new. We illustrate these now. 

1. 

  

Two lines that meet at (at least) one point must lie in the same 

plane (cases 1 and 3). Two intersecting lines or two parallel 
lines are said to be coplanar (cases 1, 2 and 3). Two lines 

which are not parallel and which do not intersect are said to 
be skew - skew lines do not lie on the same plane, i.e. they are 
not coplanar (case 4). 

INTERSECTIONS 

Lines lying on the xy-, xz- and yz- planes 

From the Cartesian form of the straight line, 

L iR Yy -3 
we can write: 

a b c 
  

Xy vy 
— = ey = ap-y) -(1)   

x=x; 2= o 
— - —oe-x) =az-z) -@)   

PN EF     - ooy = be-z) - () 

Equations (1), (2) and (3) represent the planes perpendicular 

to the xy-, xz- and yz planes respectively. Each of these 

equations is an equation of a plane containing L. The 

simultaneous solution of any pair of these planes will produce 

the same line. In fact, the three equations are not independent 
because any one of them can be derived from the other two. 

If any one of the numbers a, b or ¢ is zero we obtain a 
line lying in one of the xy-, xz- or yz planes. For example, 
consider the case that ¢ = 0 and neither a nor b is zero. 

x-x, _y-y N 
In such a case we have, —~! = }% and = = z, meaning 

a 

that the line lies on the plane containing the point = = z; 
and parallel to the xy-plane. 

  

   

  

3-d image showing that skew lines may ,E 
appear to intersect from some viewpoints. ¥



¥ _ ¥ 
a 
  and z =z, 

  

For convenience’ we sometimes write 
the equation as 

clearly, z—% has no meaning. 

  

We start by finding the vector equations of both 
lines. For L we have a direction vector given by 
by = (1= 1Di+(=2-2)j+ (=7~ (-1))k = 10i-4j-6k. 

Then, as L passes through A(1, 2, -1), it has a vector equation 
givenby r = i+2j—k+A(10i-4j—6k) 

This gives the parametric form as, x = 1+10A,y = 2-44 
and z = -1-61 —(1) 

Similarly, we can find the parametric form for M. 

The vector form of M is given by: 

P = 2ij-3k+ (i~ 9+ 6k) 

50 the parametric form is given by x = 2+7u,y = —1-9u 
and z = -3+6p -(2) 

Now, as the set of coefficients of the direction vector of M and 
L are not proportional, i.e. as 10 & = = = , the lines Land M 

77976 
are not parallel. 

Then, for the lines to intersect, there must be a value of » and 

u that will provide the same point (xq,¥4.25) lying on both 

Land M. Using (1) and (2) we equate the coordinates and try 

to determine this point (xg, v 2) 
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1+100 = 2+7n - (3) 

2-4r=-1-91 -(4) 

—1-61=-3+6u - (5) 

Solving f(}lé A and  using (4) and (5) we obtain: p = ~35—9 
and A = - 

Substituting these values into (1), we have 

- 18 =3 LHS= 1+10x35#2+7x—5 RHS. 

As the first equation is not consistent with the other two, the 

lines do not intersect and, as they are not parallel, they must 
be skew. 

The techniques we have been discussing can be used to solve 
problems in particle motion (kinematics). 

  

Particle A is translated (over 10 seconds): 

21-1 20 

32-2 |=| 30 

23-3 20 

2 

This represents a velocity vector of | 3 | (per sec). 

2 

il 2 

The position of particle Ais: 7, =| 2 |+/[ 3 

3 2 

Particle B is translated (over 10 seconds): 

15=5 10 

8-18 |=| -10 

17-7 10 

1 

This represents a velocity vector of | —1 | (per sec). 
1 

5 1 

The position of particle Bis: 7, =| 18 |+#| -1 

7 1



  

If the particles collide, there is a time at which they are in the 
same position. This means that there is a value of ¢ such that: 

1 2 5 1 

2 |+ 3 |=[ 18 |+ -1 

3 2 7 1 

This means that: 

14+2/=5+/=1=4 

2+3t=18—/=1/=4 

3+2=T7+1=>1=4 

and the particles collide after 4 seconds. 

  

Vector from A to B is: 

4 -1 1 2 

r=r=l 5 |+ 1 |+ 12 |-4] -3 
3 0 5 -1 

3 -3 

=| =7 |+4 4 
=2 1 

The distance between the aircraft is the absolute value of this 
function. We will work with the square of this absolute value: 

|r=r [ =(3=30) +(=7+41) +(-2+1) 

=9—18/+97* +49-56/+16¢" +4—41 +1* 

=62-781+261" 

We can look for the time at which this expression is a 
minimum. This is because the square root function is one to 
one and increasing. 

‘We are after the minimum and can use a graph to find it. As 
with many ‘applications’ questions, it is necessary to adjust 

the graph window. We have used Analyze Graph to locate the 
minimum. 

  

£1(x)=62-78 x+26- x2 

(15,25) 
  

-5}         
‘The closest approach occurs at = 1.5 and is V3.5 or about 
1.9nm. Note also that one of the pilots will need to pay 
attention to avoid hitting the ground! 

Exercise 4.4.1 

1 Find the Cartesian equation of the lines joining the 
points 

a (-1,3,5)to (1,4, 4) 

b (2,1,1) to (4,1,-1) 

2 Find the coordinates of the point where the line: 
2 1 

a r= [ 5 }L l[ 2 J intersects the x-y plane. 

3 1 

x-3. 2s 4=z 
b The line — 4 7 +2= 5 passes through 

the point (a, 1, b). Find the values of a and b. 

3. Find the Cartesian equation of the line having the 
vector form: 

1 1 2 2 

a r=[4]+t[~l} b r=[|]+l[} . 

-2, 0 3 0. 

In each case, provide a diagram showing the lines. 

4. Find the vector equation of the line represented by the 
Cartesian form ’%‘ = IBJ S 

Clearly describe this line. 

5. Find the acute angle between the following lines. 
0 (3 2\ (-1 

a r=[2]+:[4] and r:[s]fl[z] 3 

3 3 3 1 
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Find the value(s) of k, such that the lines: 

   

  

   

v+2 
3 

perpendicular. 

14.  Find adirection vector of the line that is perpendicular 

to both: 

SHL bl g4l g 12 3yl _z 
3 8 12 4 9 6 

15, Are the lines: 

2 
3 

Find the Cartesian form of the lines with parametric parallel? Find the point of intersection of these lines. 

equation given by: What do you conclude? 

L: x=Ay=2042,z=5\ and 
16. Two particles have position vectors: 

D ox=2p-ly=—1+3pz=1- M: x=2u-1,y 143,z = 1-2y 5 5 

= i+ 
a Find the point of intersection of these two lines. T 120 11 

b Find the acute angle between these two lines. 0 3 

rp=| 0 [+4] 2 

Find the coordinates of the point where: 0 4 

i Lcuts the x-y plane. Find when the particles collide. 

ii M cuts the y-z plane. 
17. Find the point of coincidence of: 

Show that the lines 
11 3 

X:—S = 4 are coincident. n=l 17+ 4 
-7 2 

= T=z == and = 1 

ry=| =5 |+ 3 

-3 2 

Find the equation of the line passing through the 
origin and the point of intersection of the lines with Will the particles collide? 
equations 

18. Find the closest approach of these two particles: 
x-6 _ = =3 and 5= =y-10=z-4 , 

2 -4 2 
o y=z=l r=| 2 |+ 1 =3+z and x =y = ) A 

2k -3 2 
keR\{0} meet at right angles. Find k. 9 = 

. . =l 5 |+ =2 
Consider the lines L : x z+1 and M : 

8 -2 
x_y_z=10 
4 3 ~1 

Find, correct to the nearest degree, the angle between 

the lines L and M. Answers 
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Three-dimensional Geometry 

We start this section by establishing a definition: 

Right-handed system 

hen  dealing 
with  three- 

dimensional  space, 

three base vectors 

(not coplanar) must 

be defined. We also 

conveniently use 
base vectors that are 
mutually orthogonal 

(at right-angles) and 

which are right- 
handed. 

direction of ‘motion’ 

  

So, what do we mean by right-handed? 

If we place a screw at some origin O and rotate it from OX 
to OY, then the screw would move in the direction OZ. This 

defines what is known as a right-handed system. This 
* definition becomes important when we look at the operation 

of vector product. 

Vector Product 

Unlike the scalar product of two vectors, which results in a 

scalar value, the vector product or as it is often called, the 
cross product, produces a vector. 

We define the vector product as follows: 

The vector product (or cross product) of two vectors, a and b 

produces a third vector, ¢, where 

and 0 is the angle between a and b and 7 is a unit vector 
perpendicular to both a and b, i.e. to the plane of a x b. 
This means that the vectors a, band # (in that order) form 

a right-handed system. 

We now consider some properties of the vector product. 

Directionof a x b 

  

Plane containing @ and b 

The resulting vector, ¢ = a X b is a vector that is parallel to the 
unit vector n (unless a x b=0). 
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The direction of 7 (and hence c) is always either: 

1. perpendicular to the plane containing @ and b which is 
determined by the right-hand rule (as shown in the 
diagram). 

or 

2. is the zero vector, 0. 

Magnitude of a x b 

The magnitude of @ x b is given by |a x b| = ||a][b|sin0 7] 

= lalb]lsin6]| 7| 

But, || =1and 0 < 0 < 7 = sin 6 > 0, therefore, we have 
that: 

|a x b| = |a||b|sin® 

Notice that from 1 and 2, we can also conclude that: 

If a x b =0, then either: 

1. a=0orb=0orbothaand bare 0 or 

2 sinf=0=0=0orn(as0<O<m). 

Observation 2, i.e. sin 8 = 0 = 0 = 0 or m, implies that a and 
b would be either parallel or antiparallel, which would not 

define a plane and so, the unit vector would not be defined. 

This means that for any vector, a, a X a = 0, which brings up a 

very interesting result for our i-j-k — vector system: 

ixi=jxj=kxk=0 

So, unlike the scalar product, where a @ a = [a|* > 0 for a 
non-zero vector a, with the cross product we have a x a = 0. 

Also, recall that with the dot product, if the vectors a and 
b are non-zero and perpendicular, then @ @ b = 0. So, what 
can we conclude about the cross product of two non-zero 

perpendicular vectors? 

If the non-zero vectors a and b are perpendicular then 

0= gésine = 1eaxh = |albln. 

This means that the magnitude of |a x b| = |a|[bl|n| = |allb] . 
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As a result of this property, we have for our i-j-k - vector 

system the following results: 

  

The reason for the negative signs in the above is to ensure 

consistency within the right-hand system. 

So that for example, the vectors i, j and k (in that order) form 
a right-hand system as do the vectors i, k and —j (in that 

order). A useful way of remembering which sign applies is to 

use the cyclic diagram shown: 

i 

k J 

1.Going clockwise, we take the positive sign, 
eg. kxi=j 

2.Going anticlockwise, we take the negative sign, 

eg. jxi=—k 

Operational properties 

Closure 

As a x b produces a unique vector, then the operation of 

vector product is closed. 

Commutative 

Asaxb=-bxa(to conform with the right-hand system) the 

operation of vector product is not commutative. 

In fact, because of the change in sign, we say that the vector 

product is anti-commutative. 

Notice also that |a x b| = |-b x a| = |b x 4, i.e. the vector 
a x b has the same magnitude as b x a but is in the opposite 

direction.



  

Associative 

You should try to verify that (a x b) x ¢ # a x (b x ¢) (e.g. 

use a =i, b=jand c = k) and so the vector product is non- 

associative. 

Distributive 

Also, try to verify that a x (b + ¢) = a x b + a X cand as such, 
the vector product is distributive over addition. 

Identity 

No identity element exists for the operation of vector product. 

Inverse 

No inverse element exists for the operation of vector product. 

Exercise 4.5.1 

1 For each pair of coplanar vectors, find the magnitude 
of their cross product. 

a la| = 5,[b| = 2 and the angle between a and b 

is 30°. 

b |ul = 1,|¥/ = 8 and the angle between u and v 

is 60°. 

c la| = 3,[b| = 4 where a and b are parallel. 

d |u| = 0.5,]v] = 12, where u and v are 

perpendicular. 

e 7. || = 3 and a and b are anti-parallel. 

  

Sketch the following cross products for each pair of 

coplanar vectors: 

a 

b 

450 4 

la| = 2,181 =3 
Where @ and b can be considered 
as lying on the surface of an 
upright table. 

b 

b 45° 

lal = 4,18l =3 

c 

45° 

lal = 2,181 = 2 
i axb i bxa iii axa 

a  Ifla =5,/ =4andaeh =6, findlaxb|. 

b Iflal = 5,|b = 4 and ae b = 12, find |a x b| 

If la| = 2, 6] = 9 and |axb| = 15, find the angle 

between the vectors a and b. 

Iflal = 3, /bl = 3 and laxb| =6,findasbh. 

If la| = 1, |b| = /3 where a and b are mutually 

perpendicular, find: 

a [(a+b)x(a—b). 

b |(2a+b)x(a-2b)|. 
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Vector form of the Vector 

Product 

1 Component form 

The vector product is only defined when both vectors are 
three dimensional. 

a; by 

The vector product of @ = | a, |and b = | b, 
by: ay by 

is given 

This is known as the component form of the cross product. 
The result is a third vector that is at right angles to the two 
original vectors. This can be verified by making use of the dot 
product. Using the ‘product’ @ e (a x b) we have: 

a ayby—azby 

ay |*| aby—aby 
ay ayby—ayby 

= ay(ayby—azby) + ay(azby —aybs) +az(a by —ayb)) 

= ayjayby—aja;by +ayazhy —aya by +aza by —asasby 

=0 

You should check for yourself that the vector product is also 
perpendicular to the second vector. 

Also, notice that in the above diagram, the resulting vector ¢, 

points in the direction that is consistent with the right-hand 
rule. 

2 =1 4x-2-1x4 -12 

4 (X[ 4 |T| Ix=1-(=2)x2 |=| 3 

1 -2 2x4-(-1)x4 12 
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Check: 

2 -12 
4le| 3 |=-24+12+12=0, 
1 12 

-1 =12 
4 |o| 3 |=12+12-24=0 
=2 12 

S —2ira CEE L EIRINE T i ] 

2 The Determinant form 

When vectors are given in base vector notation, a more 

convenient method of finding the Vector Cross Product 
relies on a determinant representation. Given two vectors 

a = ajitaj+ask and b = byi+byj+bsk, the vector 
product a x b is defined as: 

Applying this to the vectors in Example 4.5.1, where 
a =2i+4j+k and b = —i+4j—2k we have: 

  

  

      

ik 
axb=| 41| =i*! 2l1+k23 

s a2| a2 

= 12043+ 12k 

which agrees with our previous answer. 

Using the determinant form of the cross product we have: 

  

          

ik e 1ot S 
3-42   

= (0-(-4))i-(4-3)j+(-8-0)k 

= 4i-j-8k 

Therefore, |ax b| = J/16+1+64 = J81 = 9 

(Y S YRl HE)



  

We first need to determine a x b : 

  

            

ijok 

3-42 - h 

= 2i-j-5k 

Next, [axb| = J4+1+25 = .f30. 

Fromax b = |a||b|sin®n wehavethat |ax b| = |[al[b|sin6n]| 

= |al|b|sin® , where 6 is the angle between a and b. 

lal = JAFT+1 = /6 and p] = JOF16+4 = 29,50 

30 = 6% 295in6 & sin® = 0 
J6x 29 

~0=24°32" 

T T e S s e e Y T S| 

Of course, it would have been much easier to do Example 
4.5.3 using the scalar product! 

The cross product, @ x b, will provide a vector that is 
perpendicular to both @ and b. In fact, it is important to 
realise that the vector a x b is perpendicular to the plane that 
contains the vectors a and b. This information will be very 
useful in the next sections, when the equation of a plane must 
be determined. 

Let ¢ be the vector perpendicular to both @ and b. 

c=axb= 

i j ok 

21 1 |=4 
1 -3-1 

= (=1+3)i-(2-1)j+(6- 1)k 

  

=2i-j+5k 

However, we want a vector of magnitude 5 units, that is, we 

want the vector 5¢. 

(2i—j+5k) = —=(2i—j+5K) - 1 1 
I /30 [ s 
i 5 So, 5¢ = —=(2i—j+5k). 
s 

  

We start by drawing 
a diagram of the 
situation described T 
so that the triangle 
ABC lies on the 
planes  containing 

the points A, B and 
C. 

   

  

C(0,5,1) 

  
Then, the vector, 

perpendicular  to 
the plane containing the points A, B and C will be parallel to 
the vector produced by the cross product ABx AC. 

1 2 1 

Now, AB = AO+ OB = —[2}+[ ] = [4} 

3 0, =3 

1 0 ~1 

and AC = AO+OC = ,[2]4([ ] =: [3] 

3 1 —2, 
Then, 

1 -1 —1x-2-3x-3 1 

ABXAC = |- X[ =[—3x—l—l><—2 =5 

~3; =2, Ix3-(-1)x-1 2 

Letc = ABxAC, 

3-d realisation 
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Exercise 4.5.2 
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A set of vectors is defined by: 
1 ~1 1 =2 

- [z],b . U . [o}d: [4] 
3 -3 s B 

Find the vector products: 

a axb b axe ¢ 

d bxe é bxd f exd 

Find a vector that is perpendicular to both: 
1 4 

[ZJ and [ 6 J 

1 2 

Verify that the vector @ = i+j+k is perpendicular 

to the cross product @ x b where b = 2i-3j+k . 

Verify that if @ = i+6j-3k, b = —i+2j+k and 
¢ =2i-j-k then 

a ax(b+te) =axbt+axc, 

b ax(bxc) = (aec)b—(aeb)c, 

Ifa = mi+2j—k and b = 2i+nj—k, 

a Find: i axa i 

b Show that mn -4 =0if allb. 

Find a vector that is perpendicular to both the vectors 

i+6j+3k and i+2j—k and has a magnitude of 2. 

Find a vector that is perpendicular to the plane 

containing the points: 

a A(0, 0,0), B(0, 5,0) and C(2, 0, 0). 

b A(2,3,1),B(2,6,2) and C(-1, 3, 4). 

Using the cross product, find, to the nearest degree, 

the angle between the vectors: 

a  w=2i-j+2kandv=—i+2j+2k. 

b a=3i-j+2kand b =j+k, 

Prove that (a +b)x (a—b) = 2bxa. 

  

Extra questions 

  

Applications of the 

Vector Product 

Ts Area 

Consider the parallelogram OACB lying on the plane, with 

the vectors a and b as shown. 

  

Then, the area of OACB is given by: 

OA x [b|sin® = |a|(|b|sin®) 

= laxb| 

ie. the area of the parallelogram OACB is given by the 
magnitude of the cross product ax b . 

We can prove this by using the result 

lax b2 = |a|?|b]> —(a ® b)> where we replace aeb with 
|a||b|cos® and then carry through with some algebra. We 

leave this proof for the next set of exercises. 

  

We first need to determine the cross product, ax b : 

23|, 
1-1 

= 13§+ 55+ 7k 

ijk 
213 (= 
141 

13 

4 -1 

21 

14 
axb = i k 

         



  

Now, 

lax bl = |-13i+5j+ 7kl = J169+25+49 = /243 

3-d realisation 

  

Then, the area of the parallelogram is /243 unit?. 

  

We construct the vectors from the vertex (1, 6, 3) to the vertex 

(0, 10, 1) and also the vector from (1, 6, 3) to (5, 8, 3). 

These vectors are: 

s I S | 

w 
oo
 

— 

I & 

and b I 

w
o
w
 

» 

| 

w 
oo
 

— 

" 

o 
n 

& 

Next, using the fact that 
laxb| = |allb|sin® is a 

measure of the area of the & 

parallelogram containing the 
vectors aand b, we can deduce 
the area, A, of the triangle 
containing these vectors to be: 

In this case, the result is: 

d= %h/42+(-8)2+(-13)2 - %A/404uni(sz — Ji0Tunits? 

  

2. Geometric proofs 

In the same way that we used the scalar product to neatly 
prove geometric theorems, for example, proving the cosine 

rule, we find that the vector product serves just as well for 
other geometric theorems. We now use the vector product to 

prove the sine rule. 

  

Consider the triangle ABC with associated vectors as shown: 

From the diagram we 
have that @ = b—c. 

Then: 

axa = ax(b-c) 

  

But,asaxa =0, 

then 0 =ax(b-c) 

ie. 0=axb-axc 

=axc=axb 

=laxe| = |laxb| 

. |alle|sin(n—B) = |al|b|sinC 

.~ lalle|sinB = |al|b|sinC (as sin(n—B) = sinB) 

And so, l¢|sinB = |b|sinC 

lel _ 1ol 
sinC  sinB 

e _ b 
Thatis, sinC sinB’ 

. lel _ lal i Similarly, we can prove that e End”® leading to the 
results: 

a e b 
sind  sinC  sinB* 
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Exercise 4.5.3 

232 

Find the area of the parallelogram with adjacent 

vectors: 

a 2i+kand —i—j+3k 

b 3i—j+2k and 5i+j-k 

A parallelogram has two adjacent sides formed by the 

vectors: 

e 
a Find the cross product of these two vectors. 

b Find the area of this parallelogram. 

c Hence find the angle between the two vectors. 

A triangle has vertices (-1, 2, 4), (3,7, -5) and (4, 2, 3). 

Find the area of this triangle. 

Find x, where x > 0, if the area of the triangle formed 
by the adjacent vectors xi +j—k and j—k is 12 unit. 

Find the area of the triangle with adjacent sides formed 
by the vectors 2i+3j—4k and 2i-3j+4k . Hence 

find the angle enclosed by these two vectors. 

Show that the quadrilateral with vertices at O(4, 1, 0), 

A(7, 6, 2), B(5, 5, 4) and C(2, 0, 2) is a parallelogram. 

Hence find its area. 

Find the area of the parallelogram having diagonals 

u=3i—j+2k and v = i-2j+k. 

If @ and b are three-dimensional vectors and 

6 is the angle between a and b, use the result 
that |axb|> = |al?[b|>—(aeb)> to prove that 
laxb| = |a||b|sin® . 

Find, in terms of & and B the vector expressions for: 

ai OA 

where both OA and OB are unit vectors. 

  

Extra questions 

Answers 

     
b Usethevectorproducttoprovethetrigonometric 

identity sin(o.—p) = sinoicosP — sinBcosor. 

Let ABCD be a quadrilateral such that its diagonals, 
[AC] and [BD], intersect at some point O. If triangle 

ABC has the same area as triangle CBD, show that O is 

the mid-point of the diagonal [AC]. 

Show that the condition for three points A, B 

and C to be collinear is that their respective 

position vectors, @, b and ¢ satisfy the equation 

(axb)+(bxc)+(cxa) =0. 

   



  

Vector Equation of a Plane 

he approach to determine the vector equation of a plane 
requires only a small extension of the ideas of Section 4,3. 

In fact, apart from introducing the form that the equation of a 
plane has, this section has its foundations in Section 4.5. 

We begin with the vector equation of a plane. 

  

Let P(x, y, z), whose position vector is » = OP be any point 

on the plane relative to some origin O. 

Consider three points, A, B and C on this plane where OA = 
a, AB = b and AC = c. That is, the plane contains the vectors 

b and ¢, where b | 0 | ¢ and the vectors a, b and ¢ are non- 

coplanar. 

Now, as AP, b and c are coplanar, then we can express AP in 

terms of band ¢: AP = Ab + e for some real A and 1. 

‘Then, r = OP = OA+AP = a+Lb+pc. 

That is, every point on the plane has a position vector of this 

form. 

As such, we say that the vector equation of a plane is given by 

r=a+\b+pc 

This means that to find the vector form of the equation of a 
plane we need to know: 

1. the position vector of a point A in the plane, and 

2. two non-parallel vectors in the plane. 

  

2 3 

Letb= [1] andc= [ 0 ] be two vectors on the plane. 

1 ~1 

1 

Then, as the point (1, 2,0) lies on the plane we leta = | 2 | be 

the position of this point. 0 

Using the vector form of the equation of a plane, 

1 2 3 

ie.r = a+Ab+pe,wehave r = [2]+X[1]+p[ }_. 

0 1 ~1 
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Cartesian Equation of a Plane 

In the same way that we were able to produce a Cartesian 
equation for a line in 2-D, we now derive the Cartesian 
equation of a plane. 

Using Example 4.6.1 we obtain the parametric equations and 
use them to derive the Cartesian equation of the plane. 

1 2 3 

From the vector equation r = [2} + K[IJ LS p{ 0 ] we obtain 

0 1 ~1 

the following parametric equations: 

x=1+2\+3pu-(1) 

Now we find expressions for \ and p in terms of x, y and z, 
taking care to use all three equations while doing this: 

From (1) and (3) we obtain: & = L5321 — 4) 

From (2) and (3) we obtain: it = y—z-2 - (5) 

Finally we substitute these back into one of the equations. In 
this particular case it will be easiest to use (4) and (2) - and 

in fact we didn’t need the expression for y, though in most 
cases we will. 

Substituting (4) into (2) we obtain: y = 2+ ’% 

and simplifying we get: x—5y+3z = -9 . 

This result tells us that the: 

    

From the vector equation of the plane, namely: 
1 =2 1 

r=|3|+M 1|+ u[] J ) 

4 1 2 
we produce the parametric equations: 

x=1-22+p -(1) 

y=3+r+p -(2) 

z=4+7+2n-(3) 

Next, we eliminate A and p:(2) - (1): y—x = 2+ 3% - (4) 

x@)-@)r WIS 
(4)-3x(5): —5y-x+3z=-4 

That is, the Cartesian equation of the plane is given by 

—5y—x+3z=-4orx+5y-3z =4, 

R B e L e e | 

Exercise 4.6.1 

1. Find the vector equation of the plane containing the 
vectors b and ¢ and passing through the point A. 
In each case, draw a rough diagram depicting the 

situation. 

ab=3it+t2j+k,c=-2i-j+k,A4=(1,0,1). 

bb=i=j+2k,c=-i-j+k, 4=(-1,21). 

cb=2i+2-k,c=2i-j+3k,A=(41,5), 

db=3itj-2k, = i-2+3k, =231 

2 Find the Cartesian equation for each of the planes in 
Question 1. 

=5 Find the: 

i vector equation. 

ii Cartesian equation of the plane containing the 
points: 

a A(2,3,4),B(-1,2,1) and C(0, 5, 6). 

b A(3,-1,5), B(1, 4, -6) and C(2, 3,4).



  

4. A plane contains the vectors b = 2i—j-k and 

¢ =3itjt2k. 

a Find the vector equation of the plane, containing 

the vectors b and ¢ and passing through the 
point: 

i (2,-2,3). 

i (0,0,0). 

b Find the Cartesian equation for each plane in 

parta. 

c Express bx ¢ in the form ai + bj +ck. 

d What do you notice about the coefficient of x, 
yand z in part b and the values a, b and ¢ from 
partc? 

Normal Vector form of a Plane 

Before we formally derive the normal vector form of a 
plane, we consider an example that follows directly from the 

work covered so far. In particular, Question 4 from Exercise 

4.6.1 - if you have not attempted this problem you should do 

50 now, before proceeding further. 

Consider a plane containing the vectors b = 3i—j+2k 

and ¢ =2i+2j+k and passing through the point 
A(2, 1, 6). Now, the cross product bxc represents a 

vector that is perpendicular to the plane containing the 

vectors b and c. 

ik 
Letn=bxc=|3_12|= 

221       

  

  

  

= —Sitj+8k 

Wenowhaveavector, n = —5i +j+ 8k thatis perpendicular 
to the plane in question. 

  

~
 

    

    3-d realisation - plane and perpendicular e 
vector 

   

Next, consider any point P(x, y, z) on this plane. As P lies on 
the plane the vector AP must also be perpendicular to the 

vector n. This means that ne AP = 0. 

To use the equation # e AP = 0 we first need to find the 
vector AP. As AP = AO + OP, we have: 

AP = —(2i+j+6k)+ (xi+yj+zk) 
= (x=2)i+(y-1)j+(z—6)k 

Then, from 7¢ AP = 0 we have 

(—Si+j+8k)e((x—2)i+(y—1)j+(z-6)k) =0 
S-5(x-2)+(y-1)+8(z-6) = 0 

©-5x+y+8z=39 

That is, we have obtained the Cartesian equation of the plane 
containing the vectors b = 3i—j+2k and ¢ = 2i+2j+k 

and passing through the point A(2, 1, 6) without making use 

of the parametric form of the plane. 

We check this result using the parametric form of the plane. 

2 3 2 

From the vector for, r = | I [+ —l]+u 2 

6 2 1 

we obtain the parametric equations: 

=2+3h+20 -(1) " 

y=1-1+2p -(2) 

and =6+2A+p -(3) 

(1-Q): x—y=1+4\ - (4) 

(2)-2x(B)  y-22 = —11-5% - (5) 

From (4) and (5) we obtain: 

x—y-1_y=2z+11 Yoyl Yooz Sx+y+8z=139. : S - Srtyt8z =39 
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As expected, we produce the same equation. 

To use this method, we require a vector that is perpendicular 

to the plane and a point that lies on the plane. We could use 
the vector, n (say) or the unit vector 7, or even -n, as they are 

all perpendicular to the plane. 

We can summarise this process as follows: 

To find the Cartesian equation of a plane through the point 
Py(xp. ¥ 29) having a non-zero normal vector n (or #) we 

1. let P(x, y, z) be any point on the plane, and 

2 find the vector n = ai+bj+ck . 

Then, as PP L n for all points P on the plane, we have 

PyPen =0 
= [(x—xp)i+(y—yoli + (z=z)k] ® (ai + bj + ck) = 0 

sax—xg) +b(y—yg) +e(z-z9) = 0 

Or, after some simplifying, ax+by+cz'=d 

  

Notice that if two planes, 1) and I1, have normal vectors, 
ny = aji+bj+ck and ny = ayi+byj+cyk respectively, 
then the two planes, I1; and I, are 

1. parallel iff their normal vectors are parallel, i.e. iff n, = 

mxn,where meR 

2. perpendicular iff their normal vectors are 
perpendicular. i.e. iff n, en,=0 

236 

ie.iffaa,+bb,+cc,=0 

Taking this one step further, this 
result also means that we can 
use the normals to find the angle 
between two planes. The angle 
between two planes is defined as 
the angle between their normals. 

  

If two planes, TI, and 
T, have normal vectors ny = ai+b;j+ck and 

n, = ayi+byj+ c,k respectively, and intersect at an acute 

angle 0 (or T - 6 depending on their direction), the acute 
angle 6 can be found from the product rule: 

   

  

Using the normal vector, # = 3i—2j+ 4k and a vector on 

the plane passing through the point A(3, 1, 1), i.e. the vector 
AP = (x=3)i+(y—1)j+(z— 1)k, where P(x, y, 2) is an 

arbitrary point on the plane, we have 
ne APry:PO P 

= (3i-2j+4k) e [(x=3)i+(y—1)j+(z-1)k] = 0 

Thatis, 3(x—3)+(-2)(y-1)+4(z-1) =0 

Or, after some simplification, 3x -2y +4z=11 

  

The angle between the planes corresponds to the angle 
between their normals. So, using the dot product we have 

(3i—2j+4k) e (i—j+3k) = [3i—2j+4k||i—j+3k|cosO 

3+42+12 = J29% /1 cos® 
17 

29T 
.cosf =



And so, we have that 8=17°52" = 18° (to the nearest 
degree). 

To find the angle between the planes we need the normal 
vectors to the planes. From our observations, we have that a 

normal vector can be directly obtained from the equation of a 
plane by using the coefficients of each variable. 

For the plane 2x + 3y - 8z = 9, a normal vector would be 
2i+3j -8k and for the plane —x + y - 2z = 1, a normal 
vector would be —i+j -2k . 

Then, we proceed as in Example 4.6.4, using the cosine rule: 

(2i+3j—8k)o(—i+j—2k)=|2i+ 3j— 8kl||-i+j—2k|cosB 

£=2+3+ 16 = JT7x Joc0s0 
7 1 

€080 = ——— 
V77 % J6 

That is, 6 = 37°44" = 38° (to the nearest degree). 

R T e e e ) 

Exercise 4.6.2 

1 Find the Cartesian equation of the plane containing 
the point P and having a normal vector, 1. 

I a n=2i-j+5k,P=(3,4,1) 

o £l i = —4i+6j-8k,P=(-2,3,-1) 

< n=-i+3j-2k,P=(2,4,5) 

d n o Si+2j+k,P=(-1,2,1) 

2. Which of the planes in Question 1 pass through the 
origin? 

3 Find the Cartesian equation of the plane containing 

the points: 

a A(2,1,5),B(3,2,7) and C(0, 1, 2) 

b A(0,2,4),B(1,2,3) and C(4, 2, 5) 

c A(1,1,7), B(2,-1,5) and C(-1, 3,7) 

4. 

10. 

  

Find the angle (to the nearest degree) between the 

planes with normal vectors: 

a i—j+kand i—j+3k. 

b —3i+5-2k and j+k. 

e 4i-2j+7k and 2i+ 11j+2k . 

d —3i+2j—4k and 9i-6j+8k 

Find the angle between the planes: 

all) :~x+3y-z=9and I, : 6x+2y+3z =4 

b, :2y+2y-3 =zand M, :2y-32+2=0 

Ty :2x—y+3z=2and M, : 2x+y-Tz = 

Find the equation of the plane which passes through 
the point A(4, 2, 1) and: 

a contains the vector joining the points 

B(3,-2,4) and C(5,0, 1). 

b is perpendicular to the planes with equation 

S5x—2y+6z+1 =0 and 2x—y-z = 4. 

Find the equation of the plane which passes through 

the point A(-1, 2, 1) and is parallel to the plane 

x-2y+3z+2 = 0. 

Find the equation of the plane which passes through 
the point A(-1, 2, 1) and is parallel to the plane 
2y—-3 = 3x+5z. 

The planes 4x—y+6z = =5 and ax+by—z = 7 are 
perpendicular. If both planes contain the point 

(1,3,-1), find a and b. 

a Find a vector equation of the line passing 
through the points (3,2, 1) and (5,7, 6). 

b Find the normal vector of the plane 

3x+2p+z=6. 

c Hence, find the inclination that the line 

X3 _vy-2_z-1 makes with the plane 

3x+2p+z = 10, 
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The Normal Form 

We now formalise (or at least give a complete vectorial 
presentation for) the equation of a plane in three dimensions. 

The good news is that the normal form of the vector equation 
ofaplane in three dimensions develops in almost the same way 
as the vector equation of a line in two and three dimensions. 

’ 

/ 

  

Let n be a (unit) vector from O normal to the plane and d be 
the distance of the plane from the origin. 

The condition for a point P to be on the plane is that OA is 

perpendicular to AP. 

Thatis, OA AP = 0 

Now, AP = AO+OP = —dn+r 

So that dne(—dn+r) =0 

Now, dividing by d (assumed to be non-zero) 

we have: ne (—dn+r) = 0 

c—dnen+ner =0 

=ner=dnen 

sner=d(@snen = 1) 

That is, the normal vector form of the equation of a plane is 

givenby ner = d. 

If we are using 1 (not a unit vector) the equation becomes 
ner =D, where D is no longer the distance of the plane 
from the origin. 

If we know the position vector a of a point on the plane we 
can write the equation as: 

1 

For example re | 1| = 8 is the equation of a plane. 

1 
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‘We can get this into a Cartesian form by noting that r is the 

position vector of some arbitrary point P(x, y, z) on the plane 

and so we can write the vector expression as: 
! 1 

y|ell|=8,orx+y+z=8. 

z, 1 

Converting from Cartesian to vector form: 
2 

2x-y+4z=2becomes re|—1|=2. 

4 

If we want to get the equation in » form, ie. in the form 
ner = d wecan work out that the length of the vector 

2 

—1 | is N22+(=1)2+42 = /21, and so, from the equation 
4 

2 

re|-1| =2 we divide both sides by /21 to get: 
4 

2 2 

ch -1|= L><2 orre 
1 

A 7 m A 4 4 

  

We then get the information that the distance of the plane 
from the origin is _2_ . 

21 

  

We need to prove that n is perpendicular to v. 

Rewriting x — 2y + 2z = 11 in the normal vector form, we 

have: 1 

rel-2|=11 

2 1 
From this equation, a suitable n is the vector | -2 |. 

2 

From the vector equation of the line, the direction vector of 

vis:



1y (4 
As [—2} . [3] = 4-6+2 = 0,thevectorsare perpendicular. 

2 1 

So the line and plane are parallel. 

From the vector equation of the line we obtain the parametric 
equations: 

x= 2+5s 

y=1l#+s 

s = and 

If this line lies on the plane, then the parametric equations 
must satisfy the Cartesian equation of the plane. Substituting, 
into the equation x - 3y + 2z = -1, we get 

LHS=x-3y+2z = (2+55)=3(1 +5)—2s 
2+55—3-3s-2s 

s 

I 

= R.H.S - Therefore, the line lies in the plane. 

Exercise 4.6.3 

For this set of exercises, where appropriate, make use of the 
normal vector form to solve the questions. 

1. Convert these planes to Cartesian and vector form: 

T 
i 
  

Given A(1, 1, 0), B(2, 1, 3) and C(1, 2, -1), find the 

Cartesian equation of the plane containing A, Band C. 

(Find a parametric form first by taking A as the point 
in the plane and AB and AC as the two vectors in the 
plane.) 

Re-solve Question 2 by taking the Cartesian form 
as x+by+cz=d, then calculating b, ¢ and d 
(simultaneous equations in three unknowns). 

Show that the line x + 1 = 112 = £ and the 

plane Sx+y+2z = 20 are parallel. 

Find the distance of each of these planes from the 

origin (i.e. find d): 

a  2x-3p+6z=21 

b 2x-y+2:=35 

¢ xty-3z=11 

d dx+2y-z =120 

Find the equation of the plane through (1,2, 3) parallel 
to3x+4y—52 =0, 

Find the equation of the plane through the three points 

(1,1,0), (1,2, 1) and (-2, 2, -1). 

Show that the four points (0, -1, 0), (2,1, 1), (1, 1, 1) 
and (3, 3, 2) are coplanar. 

Find the equation of the plane through (2, -3, 1) 
normal to the line joining (3, 4, -1) and (2, -1, 5). 
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Applications 

Crystals 

The beautifully regular shapes of crystals arise naturally when 

molten minerals solidify or when solutions are concentrated 
by evaporation. 

  

The regular shapes occur when the atoms (ions, molecules) 

‘close-pack’ to form arrangements like a stack of tennis balls 
in a sports shop 

The techniques discussed in this section should enable you to 
investigate the shapes that arise when identical spheres form 
such crystals. 

There are two types of stack: 

  

3rd layer directly above 
the hollows oin the Tst layer ABC 

  

ABAB 

3rd layer directly above 
the hollows o in the 2nd layer ABA 

What two crystal forms result from these two arrangements? 
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HAPTER 4 

Planes 

The sections 4.1 to 4.7 deal with planes and lines in three 
dimensional space. 

The following are three dimensional realisations of some of 
the situations discussed in these sections. 

Two parallel planes 

Two intersecting planes. 

Note that the intersection is a straight 

  

edge. 

Two intersecting planes 

- and the angle between them 

  

Choose a point on the edge where the 

planes intersect. 

Draw two lines in each plane from this point and at right 

angles to the edge. Note that these lines may not be parallel to 

the edges of the planes. 

The angle (we have shown the acute option) between these 
lines is the angle between the planes. 

Answers 

 



  

Intersection of Two Lines 

his topic was dealt with in detail in Section 4.4, however, 
we review it here. 

In general, two lines (in three dimensions) will not intersect, 

but in certain circumstances they may. We can show, for 
example, that the lines: 

~1 3 . 4 2 

r=1|4|[+A-2 andr=[4}+u[—3] 

0 1 ~1 2 
do intersect, and we can find their point of intersection. 

We show that there exist values of  and y which make the x-, 

y-and z- coordinates of the two lines identical. If we compare 
the x- and y-coordinates we get: 

—1+430 =4+2p 

4-20=4-3p 

We can solve these to get A = 3 and p = 2. The point that will 
decide whether the two lines intersect is: 

when A = 3 and y = 2, are the z-coordinates also equal? 

This can be tested: A = 3 and p = 2, [ has z-coordinate = 0 + 

A = 3 and m has z-coordinate = -1 + 2 = 3. So the lines do 
intersect. 

Substituting A = 3 and p = 2 in the expressions for the x- 
and y-coordinates we find that the point of intersection is 

(8, -2, 3). If the z-coordinates had been different, we would 

deduce that the lines do not intersect. 

Recall that lines which do not intersect and are not parallel 
(a situation we looked at in section 4.4) are said to be skew. 

Exercise 4.7.1 

La Show that the lines r, = Si+j+k+A(i+2j-2k) 
and ry = 11i+4j-2k+u(4i—j+k) intersect, and 

find their point of intersection. 

b By considering the scalar  product 
(i+2j—2k)e (4i—j+k), show that the lines 

from part a intersect at right angles. 

Given the lines: 

T 

] 
find the two lines that intersect. Find also the 

coordinates of the point of intersection and the 

acute angle between the two lines. 

Show that the line joining (1, 4, 3) to (7, -5, -6) 

intersects the line 

  

and find the point of intersection. (Find a parametric 

form for each line — remember to use a different 

parameter for each line.) 
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Py 

4. Show that the three lines: 

Lx=yrd=Zeimiztooper=zos 

NeX = g =223 
v 3 B

l
 

intersect at a single point, and give its coordinates. 

Intersection of a Line and a 

Plane 
In section 4.6 we considered the case of a line and a plane 
being parallel, and the case of a line lying in a plane. If neither 
of these happens then the line and plane must intersect in a 

point. 

The angle between a line and a plane is defined as the angle 
between the line and its projection on the plane. To find the 
angle between a line and a plane we look at the vectors n 

(perpendicular to the plane) and v (in the direction of the 

line): 

We can find angle ¢ from the formula 
subtract from 90° to find 6. 

  

Alternatively we can use the fact that cos¢ = sin® to write 
ven 

V[l 
directly sin® = 

  

Introducing a parameter A, we have the parametric equations: 

x =20y = 24—6 andz=;'%lA 

Substituting each of these values into the equation of the 
plane 3x +y—z = 9 we obtain: 

6A+(2A-s)-%:9 

ie. I8A+6A-18—(A+1) =27 

Sh=2 

Substituting A = 2, we get x =4, y= -2 and z = 1, i.e. the point 

of intersection is (4, -2, 1). 
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3 

Writing the equation of the plane as r ¢ [ 1 ] =9 

-1 

0 2 

and the equation of the line as r = _16 + f e 

3 3 

3 

we have that n = [l] and v = 

1 

Si
— 

0
D
 

Then ven = 6+2-% = 7§.|vl = ,/;é and |n] = JT1. 

Hence cos¢ = 0.81165...., ¢ = 35.7° and finally 6 = 54.3°. 

T T e MR W PR T S B e R R 

Exercise 4.7.2 

1 In each case find: 

the point of intersection of the line and plane, 
and 

it the angle between the line and plane: 

line plane 

P2+ ABi+j k) re(2i+4j—k) =28 

s == - 3~ 

b HomsgEetE 23yt =11 

S MY 
2x+4y-z-1=10 

  

a A line joins the origin to (6, 10, 8). Find the 

coordinates of the point where the line cuts the 
plane 2x+2y+z = 10. 

b Find the point where the line joining (2, 1, 3) to 
(4,-2,5) cuts the plane 2x +y—z = 3.



  

3. Try to describe with words and/or diagrams: 

a the plane x+y = 6. 

b theline x = 4,y = 2z, 

Now find their point of intersection. 

    
4. Find the distance of the point (-1, 

point of intersection of the line X —2 

and the plane x—y +z = 5. 3 

Intersection of Two Planes 

A full treatment of solving simultaneous equations in three 
unknowns is provided in Section 1.9. We revisit this area 

using the development of 3-D geometry that has evolved over 
this chapter and Chapter 24. 

If two planes are parallel they will clearly not intersect (unless 

they coincide), and this case will be identifiable because their 

respective n vectors will be parallel. For example the planes 
2x—y-z =3 and —4x+2p+2z =7 are parallel because 

their respective n vectors are 2i—j—k and —4i+2j+2k 

and —4i+2j+2k = -2(2i—j—k). If two planes are not 

parallel they must intersect in a line. 

  

Our strategy is to eliminate z and hence write x in terms of y. 

. _ 6-2y 
Adding (1) and (2): 3x +2y = 6 andso x = 5% 

Now we eliminate y and write x in terms of z. 

2z+8 
Adding (1) to 3 x(2): 7x-2z = 8 andso x = = 

Putting these together into a single equation we have the line 
x=6-2p_2:+8, 

3 7 

Note: having found the line it is worth choosing a simple- 

valued point on the line, such as (2, 0, 3), and checking that it 

lies on both planes - which in this case it does. 

  

To find the angle between the planes we find the angle 

between their normal vectors. 

NTERSECT! 

Rewriting the equations as re(i+3j+k) =5 and 

re(2i—j—k) = 1 we can calculate: 

(i+3j+k)ei—j—k) = -2 

[ +3j+k) = JTT 

[Qi-j-k)| = /6 

= Hence cos® = —= and 6 = 104.3°. 
66 

If the acute angle was required it would be (180° - 104.3°) = 
75:7% 

e —mae i S T IRTE g i ns ) 

Exercise 4.7.3 

1 Where possible, find a Cartesian equation of the line 

of intersection of the two planes and find the acute 

angle between them: 

a xty+tz=3and2x+y+3z=10 

b 2x+y+4z =7 and —x+3y+z = -8 

4 1 -1 
c r=1|2|+pl 2 |+q 1 |and 

1 0 3 

0 1 2 

r=| 2 |*M 5 |ty 1 
0 3 =3 

d re(3i+2j+k)=10andre(i-4j-2k) = 8 

a Show that the point (5, 2, -1) lies on the line of 
intersection of the planes x~3y+z = -2 and 
2x+y+3z=9. 

b Show that the line of intersection of the 

planes x+y+z =2 and 2x-y+3z = 4 is 
perpendicularto x = y = z. 

c Show that the equation of the line of 
intersection of the planes 4x+4y—5z = 12 

and 8x+12y—13z = 32 can be written as 
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=3 

3. Find the angle between the lines defined by the 
intersection of the planes: 

2y x+2ptz=0 
Py 8x+12y+52 =0 

   
O and 
0 

  

Intersection of Three Planes 

Case 1 

‘When we write the equations of three planes such as: 

xty+2z= (1) 

2x—y+z=-6 (2) 

Ix+dy-z=-6 (3) 

and consider their possible intersection, we are solving a 
system of equations in three unknowns, as already covered in 
Chapter 1. There are three possible outcomes: 

1. a single solution 

2. no solution 

3. an infinity of solutions. 

Before reading on it is worth playing with three planes 
(books, pieces of card) and trying to get a clear picture of the 

geometrical interpretation of each of these possibilities. 

1f M is the underlying 3 x 3 matrix of the system, in our case 

34 -1l |6 

det M # 0 leads to outcome (i) and det M = 0 leads either to 

(ii) or to (iii). 

detM  =1(-1x-1-4x1) - 1(2x-1 - 3x1) + 2(2x 4 - 3x-1) 

=24 

which means a unique solution, ie. a single point of 
intersection. 

To find this point we could eliminate z from (1) and (3), then 

from (2) and (3): 

(1) +2(3) Tx+9y = -12 

2)+(3) S5x+3y =-12 

and then solve. We get x = -3 and y = 1, and by going 
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back to (1) we find z = 1. Hence the point of intersection 

is (=3, 1,1). 

(There is considerable freedom as to which variable to 

eliminate and how to set about eliminating it.) 

Case 2 
Now we look at a case where det M = 0 but there is 

no solution - ie. the planes have no common point. 

Such a system is: 

Ix+y+dz =8 (1) 

3x-y 

  

4 @ 

x+y+3z=2 (3) 

‘We set off in the same way as in Case (1): by eliminating one 
of the variables in two different ways. For this system the 
obvious variable to eliminate is y: 

6x+3z = 12 I (1) +(2) 

(2)+(3) 4x+2z=6 

The first equation is equivalent to 2x +z = 4 and the second 

is equivalent to 2x +z = 3. The equations are inconsistent 

with each other and there is no solution to the system. The 
three dimensional picture is of three planes that have no 
point of intersection. 

Case 3 
In this system check that det M = 0: 

  

3x—y =1 1) 

x+2y+tz =4 2) 

x=Sy-3z=-7 3) 

We could eliminate x in two ways: 

3x(2)-(1) Ty+4z =11 

2)-03) Ty+dz =11, 

It is important to be clear what this means: if we choose any 

y and z satisfying 7v +4z = 11 we can find the value of x 

such that all three equations (1, 2 and 3) are satisfied. An 

example would be y = z = 1, leading to x = 1; check that 
all three equations are satisfied. But if we chose to satisfy 
Ty+4z = 11 withy = 

three equations are satisfied. 

     

  

= —6 we get x = 0, and again all



     

Clearly we could find as many solutions as we wanted. 

Lo (A6 11 —4A Solution is (7 = ‘k). 

To summarise: if det M = 0 there are two possibilities. 

a When we eliminate one of the variables in two 

different ways and we get two inconsistent equations 
in the other two variables, then we have no solution. 

The three dimensional picture of this is three planes 
that fail to intersect. 

b When we eliminate one of the variables in two different 

ways and we get two identical equations in the other 
two variables, then we have an infinity of solutions. 
The three dimensional picture of this is three planes 
intersecting in a line. (To find the equation of the line, 

find the equation of the line of intersection of any two 

of the planes.) 

Exercise 4.7.4 

1. Three planes can fail to have any point of intersection 

if two or more of them are parallel. 

Describe a situation where three planes fail to intersect 

but no pair of planes is parallel. 

2i Analyse Case 2 in a little more detail: 

a Find a Cartesian equation of the line 

of intersection of 3x+y+4z=28 and 

3x—y-z=4. 

b Show that this line is parallel to x+ y + 3z = 2 

3 Analyse Case 3 in a little more detail: 

a Find a Cartesian equation of the line of 
intersection of 3x-y-z=1 - (1) and 

x+2p+z =4 -(2). 

b Show that this line lies in the plane 

X—5y-3z=-7 - (3). 

c Show that (1) =2 x(2) + (3). 

4. Classify each set of planes as: 

i intersecting in a single point, in which case give 

its coordinates, or 

ii no point of intersection, or 

    NTERSECTIONS 

iii  intersecting in a line, in which case give a 
Cartesian equation. 

   

  

xty—z =10 
a 

b ) 
—x+3y+4z =14 

x+2y-z=10 
c 3x—yt+z=11 

2x+y+4z = -1 

2x+y+3z=-5 
d x-2y+2z=-9 

3x+4y+4z = -1 

This question involves concepts from the whole of this 
chapter. 

OBCDEFGH is a cuboid with O(0, 0, 0); B(0, 0, 3); 
C(4, 0, 3); D(4, 0, 0); E(4, 2, 0); F(0, 2, 0); G(0, 2, 3); 
H(4,2,3). 

a Sketch the cuboid. 

b Find parametric forms for the equations of lines 
OH and BE. Show that the two lines intersect at 

the point (2, 1, 1.5). 

c Find the Cartesian equation of plane FHD. (A 

parametric formis » = OF + sFH + (FD . Now 

convert to Cartesian form.) 

d Find the coordinates of the point of intersection 

of line BE and plane FHD, and also the angle 
between the line and plane. 

e Find the angle between plane FHD and plane 

GHCB. 

    

Show that the equations:5x + 3y +z = 3 

2xtytz=a 
are inconsistent for a = 1 and describe this situation 
geometrically in terms of intersecting planes. 
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7. 

10. 
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Find the value of k for which the system of equations: 
8x+3y+ 

  

2x+y 

represents three planes that intersect in a common line 

and find the vector equation in parametric form of the 
line of intersection. 

  

The planes x-3y-z =0 and 3x-5y-z=10 

intersect in a line, L, that passes through the origin. 

a Find the vector product of the normals to both 
planes. 

b Hence, find the vector equation of L. 

c Find the value of k for which the system of 
equations: x=3y-z=0 

3x-Sy-z=0 

—xtky+t2z = k2-4 

has: 

i no real solutions. 

ii infinitely many solutions. 

iii a unique solution. 

a On a set of axes, sketch the planes 

x+y =2a,y+z=2bz+x = 2c. 

b Find where the planes meet, i.e. solve the system 
of equations: x +y = 2a 

y+z =2b 

ztw= 2c 

c Hence, deduce the solution to the system: 
2 2 2 +y=Zaytz=Z,z4x =2 

B = QU TE S pratEs o 

a Find the two values of k for which the planes 
with equations —x+y+2z=3 ) 

kx+y—z = 3k and x+3y+kz = 13 have no 

unique solution. 

b Show that for one value of k, there are in fact no 
solutions. 

c Show that for the other value of k, the planes 

meet along a line. Find the Cartesian equation 

of this line. 

      

11.  Show that the equation for the plane passing through 

the point M(x, v, z,) and perpendicular to the planes 
ax+byy+cz=d and ax+by+cyz =d; can 
be written in the form: 

X—Xg¥Y—YgZ-2 

ap by ¢ | =0 

@G b o 

12.  Show that the equation for the plane passing 

through the points M(xg, vg.2z9), N(x},»,.2;) and 

perpendicular to the plane ax+by+cz = d can be 

written in the form: 

X=Xy Y=Yy Z-2%, 

Y- XYY 5y 
a b c 

13.  Show that the equation for the plane passing through 

the point M(x,y,z,) and parallel to the straight 

lines: 
4 h a h 

Lyir=|by|+Am|and Ly:r = |by|+4my 

Gt Ry % 2 

X=Xgy—YoZ 

may be written in the form |/, m; ;| =0. 

Loomy oy 

14.  Show that the equation for the plane which contains 

the lines 

el 1 @ / 

Ly: o r=|b[+Mm|and Ly:r=|by|+1m 
g n & n 

may be written in the form 

x-ay y-by z-¢; 

ay—ay by—bycy—c; | =0. 

1 m n 

Answers 

 



     

  

STATISTICS & PROBAB|V 

~ 5.1 Statistics 

 



L\l = 

Data Collection 

tatistics is the science of getting ‘facts from figures’ and 

involves the collection, organisation and analysis of sets 
of observations called data. The data represents individual 
observations to which we can assign some numerical value or 

categorise in some way that identifies an attribute. 

The set from which the data is collected is known as the 

population. The population can be finite or infinite, however, 

the data collected will be a subset from this population. Such 
a subset is called a sample. The process of gathering the data 

is known as sampling. Once we have our sample, we use 
characteristics of the sample to draw conclusions about the 

population. This is known as making statistical inferences. 

Note that statistical inference is quite different from simply 

collecting data and then displaying or summarizing it as a 

‘diagram’ - which is known as descriptive statistics. 

The method that is used in collecting the sample affects the 

validity of the inferences that can or should be made. The 
aim then is to obtain a sample that is representative of the 

population. 

This concept can be represented as follows: 

Population 

  

    

Analysis 
Description 
/P 

Sample 

Sampling 
process       

   Inference 

One approach to reduce bias in the sample we acquire is to 

use a random sampling process. By doing this we stand a 
better chance of obtaining samples that reflect the population 

as a whole. 

Types of data 

Data can be classified as numerical or categorical — 

Numerical data: 

These are made up of observations that are quantitative and 

so0 have a numerical value associated with them. 

For example, if the set of data is to represent heights, then the 
data would be collected as numerical values, e.g. 172 cm, 165 

cm, etc. 

Categorical data: 

‘These are made up of observations that are qualitative (which 

are sometimes also known as nominal data). 
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For example, if the set of data is to represent hair colour, then 
the data would be collected as qualitative data e.g. black, 
brown, blue, etc. 

Discrete and continuous data 

As a rule of thumb, discrete data are sets of data that can 

be counted. Continuous data are sets of data that are 

measured. 

Exercise 5.1.1 

T Micro Inc. produces 14 500 electrical components 

each month. Of these, 2,000 are randomly selected and 

tested. The test reveals 42 defective components. 

a Whatis: i the population size 

i the sample size? 

b Give an estimate of the number of defectives 

produced during that month. 

2. A salmon farm is attempting to determine the number 
of salmon in its reservoir. On Monday 300 salmon 
were caught, tagged and then released back into the 
reservoir. The following Monday 200 salmon were 
caught and of these 12 were already tagged. 

a Comment on the sampling procedure. Is 

the sample size large enough? Is there a bias 
involved? 

b Estimate the number of salmon in the reservoir. 

3; A manufacturer wishes to investigate the quality of his 

product - a measuring instrument that is calibrated to 
within a 0.01 mm reading accuracy. The manufacturer 
randomly selects 120 of these instruments during one 
production cycle. She finds that 8 of the instruments 

are outside the accepted measuring range. One 
production cycle produces 1500 of these. 

a Whatis: i the population size? 

ii the sample size? 

b Give an estimate of the number of unacceptable 
instruments produced during a complete 

production cycle. 

c In any given week there are 10 production 

cycles. How many unacceptable instruments 

can the manufacturer expect at the end of a 

week? Comment on your result.



  

4. Classify the following as categorical or numerical data. 

a The winning margin in a soccer game. 

b The eye colour of a person. 

¢ The number of diagrams in a magazine. 

d The breed of a cat. 

e The fire-hazard levels during summer. 

5 Classify the following as discrete or continuous data. 

a The number of cats in a town. 

b The length of a piece of string. 

c The time to run 100 metres. 

d ‘The number of flaws in a piece of glass. 

e The volume of water in a one litre bottle. 

Displaying Data 

There are a number of ways that we may display sets of data 

that have been gathered. In fact, there are also a number 

of ways that we may gather the data. In our case, we shall 

confine our process to a method of random sampling and 
assume that, all things being equal, the data will be treated as 

the population for examination purposes. 

  

Statistical Display, Ellis Island, New York. 

Our first task is to deal with the types of data we collect, that 
is, discrete or continuous. 

As mentioned earlier, if the sets of data are counted, they 

are considered discrete and if they are measured, they are 

considered continuous. So, for example, if we were counting 
the number of fish that were caught over a period of 365 days, 
this would be considered as a discrete measure (as we are 

carrying out a counting process). However, if we were looking 

    
    UNie 

to carry out some analysis about the length of these fish, then 

that would be considered as a continuous measure (as we are 

carrying out a measuring process). 

Similarly, if we were looking at rainfall, we could measure 

the number of days on which it rained - which would be 

considered to be a counting process or, the amount of rain 

that fell on each day - which would be considered as a 

measuring process. 

So, in the case of the rainfall example, we could have the 

following tables of data: 

Discrete (counting the number of days): 

Number of days on which it rained 

Month Jan | Feb | Mar | Apr | May | June 
  

  

No.of days | 4 4 5 9 4| 18 
  

Month July | Aug | Sep | Oct | Nov | Dec 
                  No. ofdays | 19 19 14 13 7 5 
  

Continuous (measuring the amount of rain): 

Amount of rain that fell (in mm) 
  

Month Jan | Feb | Mar | Apr | May | June 
  

Amount of rain| 12.5 | 11.0 | 143 | 13.7 | 31.5 | 532 
  

Month July | Aug | Sep | Oct | Nov | Dec 
  

Amount of rain| 735 | 829 | 50.4 | 30.1 | 28.7 | 20.2                   
From the data, we also observe the different forms that the data 

takes on. For the discrete data (the number of days) we have 
whole numbers, i.e. counting numbers. For the continuous 

data (the amount of rain) we have rational numbers. 

Although there are distinct differences between the two 

types of data, realize that there will be times when a set of 

data contains whole numbers (i.e. counting numbers) but 

is recording a measure from a continuous set of data. For 
example, the amount of rain is recorded to the nearest integer, 
then the above result for the amount of rain would look like: 

Amount of rain that fell (in mm) 
  

Month Jan | Feb | Mar | Apr | May | June 
  

v @ Amount of rain| 13 1 14 14 32 
  

Month July | Aug | Sep | Oct | Nov | Dec 
      Amount of rain | 74 83 50 30 29 | 20               
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So, even though the numbers shown are integers, they still 

reflect a measuring process and so are still considered as 

continuous. 

You have already been exposed to some statistical work in 

the past, such as representing data in table form or graphical 

form. Here, we will review this by way of examples so that you 

may be reminded of the elements involved when dealing with 
these types of data. 

  

In this instance, we note that we have a counting process, 

meaning that we are dealing with a discrete data set. So, we 

can set up a frequency table. 

Sum from rolling two dice o 
- — —T—T—— 
2(3/4|5]6|7]8]|o]10]u]12 Score (x) 1 

[s]s]sl2]2]1]1 Frequency (f)| 1 [1]2 

Based on these results, we can now draw our graph, with the 
axes labelled appropriately, frequency on the vertical axis and 

score (number rolled) on the horizontal axis: 

| 
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APTER 5 

Discrete data can also be presented using an interval (or 

range) of numbers and not individual numbers like in the 

previous example. The next example illustrates this. 

  

Again, we have a discrete data set with well defined intervals. 
As such, we may proceed with our histogram using the given 

intervals. 
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‘There are a number styles of diagrams available. Selecting the 

best one for a particular purpose is something of an art. 

Our photograph (of a pictogram) at the Immigration Museum 

at Ellis Island in New York illustrates this. 

The first two examples show the bar-chart (in which the 

height of bar reflects the frequency) and histogram (in which 
it is the areas of the bars that matter).



  

Exercise 5.1.2 

1. The histogram below displays the number of faults 

detected during an inspection of car components. 
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23456780910 

Number of faults detected 

01 

a How many components were inspected? 

b What percentage of components had no faults? 

c What percentage of components had at least 5 
faults? 

2 The table below shows the frequency distribution of 
marks in a science test by 500 students. 

Test scores 
  

  

  

  

4.7 27 2.1 8.1 1.3 25 0.9 

5.6 122 

a Is the data continuous or discrete? 

b Draw a suitable histogram for the amount of 
rainfall that fell over the 30 days. 

Statistical Measures 

The following figures are the heights (in centimetres) of a 

group of students: 

156 172 168 153 170 160 170 

156 160 160 172 174 150 160 

163 152 157 158 162 154 159 

163 157 160 153 154 152 155 

150 150 152 152 154 151 151 

154 

These figures alone do not give us much information about 

the heights of this group of people. One of the first things 

that is usually done in undertaking an analysis is to make a 

frequency table. In this case, as there are a large number of 
different heights, it is a good idea to group the height data 
into the categories (or classes) 148-150, 151-153, 154-156, 

  

  

                  

  

  

  

  

  

  

            

Score range (x) | [0,20[ [[10, 20[| [20,30] |[30, 40[ | [40, 50( 
etc. before making a tally. 

[Frequency (f) 0 45 85 145 105 

IScore range (x) |[50, 60] |[60, 70[ |[70, 80[ |[80, 90[ [[90, 100]| Height Tally Frequency 

[Frequency (f) 60 25 15 20 0 148-150 | /// 3 

151-153 | /111111 8 

a Draw a histogram for the students marks. 
154-156 | /111111 7 

b If the pass mark is 30, what proportion of 

students passed? 157-159 | /Il 4 

G Students are awarded an A-grade if their score is 160-162 | /11111 6 

in the top 4%. What is the lowest mark possible 

in order to attain this grade? 163-165 | // % 

166-168 | / 1 
3. ‘The data shown below reflect the rainfall (mm) over a 

30-day period: 169-171 | // 2 

172-174 | /] 3 
2.0 %7 32 L5 27 75 10.5 

8.7 2.2 4.6 31 2.5 17 7.3 

22 52 4.8 6.2 2.1 7.2 12 
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Each height is recorded in the appropriate row of the tally Once we have drawn a histogram, it should be possible to see 

column. Finally, the frequency is the number of tally marks any patterns that exist in the data. In this case, there is a big 

in each row. As a check, the total of the frequency column group of students with heights from about 150 to 160 cm. 

should equal the count of the number of data items. In this There are also quite a few students with heights significantly 

case there are 36 heights. larger than this and very few with heights below the main 
group. The distribution has a much larger ‘tail at the positive 

The choice of class interval in making such a frequency table end than at the negative end and is said to be positively 
is generally made so that there are about ten classes. This is not skewed. Patterns can also be seen using other graphical 

inevitably the case and it is true to say that this choice is an art devices such as a line graph: 

rather than a science. The objective is to show the distribution 

of the data as clearly as possible. This can best be seen when 
the data is shown graphically. There are a number of ways in 

which this can be done. In the present example, we are dealing 
with heights. Since heights vary continuously, we would most 

usually use a histogram to display the distribution. 
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149 152 155 158 161 164 167 170 173 

Height 
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‘The same patterns are evident from this diagram as were seen 
from the histogram. 

  

149 152 155 158 161 164 167 170 173 While on the subject of visual displays, modern spreadsheets 

Height offer attractive graphical options. Here these data are 
displayed in two further ways: 

There are two details connected with the construction of 

histograms that you should not ignore. Firstly, as far as the 

horizontal scales are concerned, we are representing the 
continuous variable ‘height. The first class interval represents 
all the people with heights in the range 148 to 150 cm. Since ‘ 
these have been rounded to the nearest whole centimetre, | 

anyone with a height from 147.5 to 150.5 cm, or [147.5, | 

150.5], will have been placed in this class. Similarly, anyone ‘ 

with a height in the range [150.5, 153.5) will be categorized 
in the class 151-153 cm. If you want to label the divisions 
between the blocks on the histogram, technically these should ‘ 

be 147.5, 150.5 etc. Secondly, in a histogram, it is the area of | 

the bars and not their height that represents the number of 

data items in each class. To be completely correct, we should 

give the area as a measure of the vertical scale. This definition 
allows us to draw histograms with class intervals of varying [ 

widths. This is sometimes done to smooth out the variations | 

at the extremes of a distribution where the data is sparse. This 

aspect will not be considered in this chapter. 
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Measure of central tendency 

After using a graphical presentation of some sort to look at 

the general pattern of the data, we would usually calculate 
some representative ‘statistics’ The aim of producing these is 
to reduce the amount of data to a small number of figures 
that represent the data as well as possible. In the case of the 
height data we have been studying, we have already observed 

that the heights group around the range 150-160 cm. This is 
sometimes known as a ‘central tendency’ and we have several 
ways in which we measure this: 

Mode 

This is the most frequent class of data. In the present case 
there were more students in the 151-153 cm class than any 
other so we would give this class as the mode. It is possible for 
some data to have more than one mode. We describe this as 

being bimodal, trimodal etc. The mode tends only to be used 
when there is no alternative such as when we are collecting 
data on the television stations that people like best. 

  

SIS 

‘We start by constructing a frequency table for the data set: 

Frequency distribution of minutes late to school 

Minuteslate| 2 | 3 | 4 | 5[ 6|7 8] 9|10 

  

  

Frequency | 4 | 2 | 4 (105 (56|72                         

From the resulting table we observe that ‘5 minutes late’ 
occurs the most frequently. This means that the mode is 5. 

T e T T e P A N S e S e 

Mean 

This is the measure commonly (and incorrectly) called 
average. Numeric data is added and the result is divided by 
the number of items of data that we have. 

Notation: 

‘The notation used for the mean depends on whether or not 
we are claiming to have the mean of all (the population) or 
part (a sample) of the possible data set. 

In the case of the students, we appear to have a small group 
of 36 selected from all the possible students in this age group 
and so we are looking at a sample. It is generally quite clear 
whether any set of data refers to a population (such as a 
census) or a sample (such as a poll). 

The population mean is denoted by [t and a sample mean by 
x. 

For a data set x, with 7 items, both means are calculated in 
the same way: 

  

n 
The symbol 2 x;means ‘add all the x; -values’ from x, to x,. 

i=1 
That is, find the sum of all observed values. 

If the data is presented in the form of a frequency table in 
which each item of data x; is present with a frequency of f; , 
then the formula becomes: 

. 1 - i - 
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(@F7X:315:85) 

where k represents the number of groups (or intervals). 

Notice that the symbol ¥ is used for the sample mean 

and p is used for the population mean. The computational 

calculations, however, provide the same result in this instance. 

In this course, we use 1 as the symbol to represent the mean. 

We could use: 
45 

1 
= = —(2+5+8+5+...+2+9+ = ... u X, 45( 9+7) 

  

Or, we could make use of the frequency table: 

  

9 
1 1 
= X = —(2X4+3X2+4X4+5x10+6X5+.. N 2SN 52X ° 
=] Wt 7X5+8X6+9XT7+10x%2) 

_1 - 45><276 

=613 

Therefore, the student is, on average, 6 minutes late. 

e o e e 8 PR e ] 

It can be helpful to use a graphics calculator! 

Calculators vary and students should be thoroughly familiar 

with their model. Also, a particular model may be able to 
handle statistical calculations in more than one way. The TI- 

NSpire range handles basic statistics in this manner: 

Set up a Lists and Spreadsheet document: 

dd Calculator 

  

Enter column titles (mins & freq) and the grouped data. The 

raw data could also be entered as a single column. Select an 
empty cell (C1). 
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1 2 4 

2 3 2 

3 4 4 | 

4 5 10 

5 6 5| I 
c: [4]» 
  

Use MENU / Statistics / Stat Calculations. 

      E=1: Actions | 
[1)2: Insert 

*Unsaved < 

     

  

     

  

2: Distributions 

T 3: Confidence Intervals » 

‘ 4: Stat Tests » 

      

   

  

    2 s it 
  

  

Select the 1-Variable option and number of lists = 1 

  

    
   

    

     

  Num of Lists: D T 

|2§I |Cancel|         

   
Frequency List: ?red ; I 

The results will be pasted into the document. Row 2 gives the 

mean and row 3 the data total.



      

  

assumption as the students with heights below this figure 

(148 cm) will be balanced by those with heights above this 

(150 cm). In this case, the difference is quite small. 

  

        

  

  

  

          

@B freq p i 
= OneVar( 

1 4 Title ‘One—Va... 

2|| 2| x | 613333 

2l 4 | 276 
4| 10| e | 104 
5 5| $X:= Sa-.| 2292285, 

> X [«]»     

We now go back to our height data and see how we deal with 

that situation. 

For the height data, we have two ways of approaching this 

calculation. One way is to return to the original data and add 

it all up. The total is 5694. There are 36 measurements so: 

5694 - 
Mean = aE 158.16667 

Alternatively we can use the grouped data formula, There is a 

convenient way of doing this if we add an extra column to the 
original frequency table: 

Casio models have a statistics module: 

  

  

  

  

    

    

Radforn1) 
List 1 | List 2 | List 3 | List 4 

The | syp 
1 149 3 

The| of 152 8 
valu 3 155 7 

4| 158 4   
  2-VAR 

    
data 

    

  

  

  

  

  

  

  

  

              

  

  

    

    

  

Height Mid-height | Frequency fxh 

Note that not all the data is shown on the above screen. 
148-150 149 3 447 

151-153 152 8 1216 The first thing you may want to do is draw a graph. Press F1- 
GRAPH and F6-SET. Use the function keys to set the graph 

154-156 155 7 1085 a6 

157-159 158 4 632 8 el @5 

160-162 161 6 966 StatGraphl 

Graph Type :Hist 163-165 164 2 328 s = 
XList :Listl 

166-168 167 1 167 Frequency List2 

169-171 170 2 340 Color Lin &8 
ist Area :Blue/L 

M 175 3 519 HistBorder :Black 
Totals: 36 5700 [K&fredOnlyX] 

From the table: 

Exit 2/, = 36 sud Z/fX/" = 5700 

Mean = =—— = — = 15833333 . 
36 

S0 

This method of calculating the mean will not necessarily 
give exactly the same answer as the mean calculated from 

the original data as we have made the assumption that all the 

students with heights in the range 148-150 cm had a height 

of 149 cm. This will not generally be a seriously inaccurate 
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Other types of statistical graphs can be displayed in a similar 

way. If you amend the settings screen to make the graph type 

BROKEN. From the main data screen, press F1-GRAPH and 

F1-GRAPHI: 
  

  

(d7c)Real 

    

  

  

Now that the data has been entered, various statistical 

measures can be produced. 

EXIT to the main data screen and press F2-CALC and F1-1- 

VAR: 

  

  

  

  

    
  

Note that there is now extra information both above and 

below the current screen. Make sure that you consult the 
calculator's manual and are familiar with the meaning of 'Q1', 
'MED' etc. Don't let the exam be the first moment you find 

you do not know these things! 
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Median 

‘The median is found by arranging all the data in order of size 
and selecting the middle item. For the heights data, there is an 

even number of figures and so there is not a middle number. 

In this situation, we take the mean of the middle two data 

items. 

Order: 1 2 3 4 5 6 7 8 9 

Height: 150 150 150 151 151 152 152 152 152 

10 11 12 13 14 15 16 17 18 

153 153 154 154 154 154 155 156 156 

19 20 21 22 23 24 25 26 27 

157 157 158 159 160 160 160 160 160 

28 29 30 31 32 33 34 35 36 

162 163 163 168 170 170 172 172 174 

The middle heights are the 18th and 19th (156 and 157 cm) so 

the median is 156.5 cm. 

It is usual to take the mean of the two numbers to give an 
answer to represent the median, however, there are a number 

of interpolations that can be used. For our purposes, however, 
we will continue to use the mean of the two observations. 

When there are 21+ 1 observation, ie. there is an odd 

number of observations, the median corresponds to the 

(2n+ 1)+ 1 th observation (after they have been placed in 
2 

order from lowest to highest). 

e.g. For the data set {2, 4, 12, 7, 9} we first list the data from 

lowest to largest: 2,4, 7,9, 12. 

$31 
Here n =5 and so the middle observation is the =3rd 

observation. i.e. 7. 

Note that, for examination purposes, the only measure of 

central tendency that will be required is the mean. 

n 
You will have noticed that the notation ¥ = 112 

7 
i=1 

  

x; is often 

used to calculate the mean for samples - which provides an 

estimate of the population mean, p. 

However, for examination purposes, all data will be treated as 
the population. 

g 
‘That is, we will use eitherp = 1 3 x, for alist of individual n 

=1



  

k k 

observations) or p = %/2/;.\'; , where N = zf, (for 
i=1 

grouped data consisting of k groups). 

Exercise 5.1.3 

1. 

3. 

Set A: 

The following figures are the weights (in grams) of a 
group of fish sampled from a reservoir: 

226 

238 

221 

236 

220 

232 

228 

237 

Find the mode, mean and median weights. 

In a study of the weights of a sample of semiprecious 

gemstones, the following results were obtained 
(grams): 

133 

1.57 

1.81 

2.01 

111 

1.53 

1.92 

1.90 

1.15 

1.54 

Find the mode, mean and median weights. 

For the data sets below; find the mode, mean and 

median values. 

21.1 

28.8 

274 

31.5 

237 

282 

233 

244 

230 

242 

235 

242 

237 

244 

1.59 

1.82 

2.02 

1.57 

1.90 

1.90 

2.06 

111 

1.68 

1.92 

28.0 

279 

31.2 

204 

256 

28.2 

233 

222 

237 

222 

238 

229 

237 

225 

1.82 

2.06 

1.24 

1.62 

1.79 

1.90 

1.41 

1.81 

1.82 

2.04 

269 

313 

214 

25.1 

29.1 

313 

244 

239 

240 

235 

243 

231 

245 

236 

1.92 

1.59 

1.53 

1.61 

1.91 

1.17 

1.64 

1.83 

1.98 

319 

21.5 

29.9 

258 

30.3 

224 

224 

233 

225 

237 

222 

234 

229 

235 

1.46 

1.70 

1.69 

1.93 

119 

1.97 

1.83 

1.90 

1.39 

237 

26.8 

294 

336 

215 

257 

i=1 

235 

243 

230 

240 

232 

241 

231 

240 

Set B: 

25.1 

30.1 

22.5 

29.0 

27 

28 

30.3 

218 

252 

27.2 

72 

72 

73 

73 

219 

27.8 

255 

333 

29.1 

29.1 

329 

70 

73 

70 

70 

28.7 

343 

223 

27 

26 

26 

72 

71 

73 

71 

The following numbers represent the annual salaries 
of the employees of a small company. 

$20,910 $20,110 $20,390 

$20,060 $20,350 $21,410 

$21,340 $21,360 $21,360 

$20,350 $20,990 $20,690 

$20,880 $20,960 $21,240 

$21,190 $21,400 $76,000 

a Find the mean salary. 

b Find the median salary. 

$20,170 
$21,130 
$21,410 
$20,760 
$21,060 
$125,000 

c Which of the two figures is the better 
representative measure of salary? 

The selling prices for the properties in a suburb over 
June 2004 were: 

$191,000 

$180,000 

$184,000 

$190,000 

$202,000 
$181,000 

$201,000 

$178,000 

$177,000 

$195,000 

$152,000 

$163,000 

$169,000 

$169,000 

$162,000 

$166,000 

$154,000 

$164,000 

$169,000 

$150,000 

$152,000 

$169,000 

$167,000 

$159,000 

$160,000 

$163,000 

$166,000 

$157,000 

$157,000 

$163,000 

$181,000 

$189,000 

$172,000 

$172,000 

$154,000 

$196,000 

$154,000 

$185,000 

$172,000 

$1 ,150,000 
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$186,000  $166,000 $151,000  $1,155,000 

$185,000  $151,000 $168,000  $1,200,000 

a Find the mean selling price. 

b Find the median selling price. 

c Which of the two figures is the better 
representative measure of selling price? 

Extra questions 

Measures of spread 

So far we have only looked at ways of measuring the central 

tendency of a set of data. This is not necessarily the only 

feature of a data set that may be important. The following sets 
of data are test results obtained by a group of students in two 
tests in which the maximum mark was 20. 

Test 1: 

4 12 11 10 5 10 12 12 

6 8 19 13 S 7 11 13 

4 9 12 10 6 13 19 11 

3 12 14 11 6 13 16 ¥} 
5 10 12 13 7 8 13 14 

6 10 12 10 7 10 12 10 

Test 2: 

9 8 10 10 8 9 10 11 

8 8 11 10 9 8 11 10 

9 8 10 11 8 9 11 10 

9. 8 11 11 9 9 11 10 

8 9 11 10 8 9 11 11 

8 8 11 10 8 9 10 10 

The means of the two data sets are fairly close to one another 
(Test 1, 10.1, Test 2, 9.5). However, there is a substantial 
difference between the two sets which can be seen from the 
frequency tables. 
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Test 1: 

  

Mark 3 |4 (5 |6 |7 |8 (9 |10 (11 
  

Frequency 2 |2 |2 (4 (3 |2 |1 |8 |5 
  

Mark 12 (13 |14 |15 |16 |17 |18 |19 
  

Frequency 8 |6 |2 |0 |1 [0 |0 |2 
  

Test 2: 
  

Mark 3 |4 |5 (6 (7 |8 |9 |10 |11 

Frequency 0 |0 [0 (0 [0 |13 |11 |12 |12 
  

  

Mark 12 {13 (14 |15 |16 |17 |18 |19 
                        Frequency 
  

The marks for Test 1 are quite spread out across the available 
scores whereas those for Test 2 are concentrated around 9, 10 
and 11. This may be important as the usual reason for setting 
tests is to rank students in order of their performance. Test 2 

is less effective at this than Test 1 because the marks have a 
very small spread. In fact, when teachers and examiners set 
a test, they are more interested in getting a good spread of 

marks than they are in getting a particular value for the mean. 
By contrast, manufacturers of precision engineering products 

want a small spread on the dimensions of the articles they 
make. Either way, it is necessary to have a way of calculating 
a numerical measure of the spread of data. The most 

commonly used measures are variance, standard deviation 
and interquartile range. 

Variance and Standard Deviation 

Although statistical computations will usually be carried out 

using a calculator or computer, we start with a few examples 

showing the ‘background calculations’ that are actually 
carried out. Thereafter, make use of available technology to 
do the number crunching. We continue with the situation 

described in Test 1 

To calculate the variance of a set of data, the frequency table 

can be extended as follows:



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                

Mark (M) Frequency M-u fM )2 

3 2 -7.10 100.82 

4 2 -6.10 74.42 

5: 2 -5.10 52.02 

6 4 -4.10 67.24 
7 3 -3.10 28.83 
8 2 -2.10 8.82 
9 1 -1.10 1.21 
10 8 -0.10 0.08 
11 5 0.90 4.05 
12 8 1.90 28.88 
13 6 2.90 50.46 
14 2 3.90 30.42 

15 0 4.90 0.00 
16 1 5.90 34.81 
17 0 6.90 0.00 
18 0 7.90 0.00 
19 2 8.90 158.42 

Total: 640.48 

Test 1: 

The third column in this table measures the amount that each 

mark deviates from the mean mark of 10.10. Because some 
of these marks are larger than the mean and some are smaller, 
some of these deviations are positive and some are negative. If 
we try to calculate an average deviation using these results, the 

negative deviations will cancel out the positive deviations. To 

correct this problem, one method is to square the deviations. 

Finally, this result is multiplied by the frequency to produce 

the results in the fourth column. 

The last row is calculated: 

2% (3-10.10)2 = 2% 50.41 = 100.82. 

The total of the fourth column is divided by the number 
of data items (48) to obtain the variance of the marks: 

i 640.48 
Variance = —— = 13.34 

48 

The measure most commonly used is the square root of the 
variance (remember that we squared the deviations). This is 

a measure known as the standard deviation of the marks. In 
the previous case: Standard deviation = ./13.34 = 3.65 

Repeating this calculation for the second set of marks: 

Mark (M)  Frequency M-m AM—m)? 

8 13 -1.48 28.475 

9 11 -0.48 2.534 

10 12 0.52 3.245 

11 12 1.52 27.725 

Total: 61.979 

s 61.979 
= — = 1.2 Varianc 48 91 

Standard deviation = /1.291 = 1.136 

‘This figure is about one-third of the figure calculated for Test 
1. This reflects the fact that Test 2 has not spread the students 
very well. 

In summary, the variance and population standard deviation 

are calculated using the formulae: 

For individual observations: 

  

For grouped data:    
k 

where N = Z fie 
i=1 

Then, the standard deviation is calculated as the square root 
of o’ 

That is, the standard deviation of a population, 

  

In the same way that we had a sample mean, ¥, and a 

population mean, i1, when calculating ‘the mean, we have 

a similar situation with the variance. Calculators will have 

two variance functions; the population variance, o? and the 

sample variance, s*. In this course, you will always use the 

population variance o (as all data sets will be considered as 
the population). 

The relationship between the sample variance, s, and the 

population variance, o is (#—1)s* =70 with y=%. 

Having done some number-crunching with the illustrated 
example for test results, we now consider a couple more 

examples. 

  

‘With all statistics data, we have the option of making use of 
a graphics calculator — which we will do in this instance. We 

start by entering the data as a list and then use the appropriate 
options to allow the calculator to number crunch, 
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1 

  

  

  

  

  

                  

oe c D: £ fi 

k. =OneVar [ 

2 Iz 16.8 ; 

3 =X 252. 

4 x 4376. ‘ 

5 sx:= Sn-..| 318927 ‘ 
8 ox:= on..| 3.08113 E 
b 4/»             

So, in this case we have that the standard deviation is 3.08. 

  

Again, we use a graphics calculator, which will enable us 

to quickly work out the standard deviation. We enter the 
observed values (number of sixes) as the first list, and the 

corresponding frequencies as the second list: 

  

       

  

  

  

  

                

o E 

= =OneVar( 

2] 39 X 0.86 ‘ 

3 17 x 86. ‘ 

4 ) X 150. || 

S SX = Sn-..| 0.876402 

5 0 X := On.. | 0.872009 | 
5| freq | 4 l »       

This gives us the standard deviation as ¢ = 0.8720 (the 
population standard deviation). 

Sx is known as the sample standard deviation. This is the 
same as the standard deviation discussed above but with 

one less than the number of data items in the denominator 

(47 in this case). 
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ox is the population standard deviation discussed above. 

Sample standard deviation? Population standard deviation? 

Whats itall about? Unfortunately there are regional variations 
(as well as in textbooks) in the notation and the language that 

is used to define these terms. 

When we refer to the sample variance, it suggests that we are 

finding the variance of a sample and, by default, the sample 

is a subset of a population and so we are in fact finding an 

estimate of the population variance. This estimate is known as 

the unbiased estimate of the population variance. 

The unbiased estimate of the population variance, ¢ is given 

’ - 

The standard deviation of the sample is given by the square 
rootof s, ie. /s, ,which 

corresponds to the value Sx that is produced by the TI-83. 

The variance of a population, ¢ is given by: 

The standard deviation then is 0= 

  

To differentiate between division by n and division by n - 1 

we use s, for division by nand s, for division by n - 1. 

2 n 
Giving the relationship s2 52,    

Then, as the population variance, ¢ is generally unknown, 
5., serves as an estimate of 0. 

On the TI-83 we have that Sx=5_ and sx=5. 

Itis therefore important that you are familiar with the notation 

that your calculator uses for sample standard deviation 

(unbiased) and population standard deviation.



SIS 

  

Exercise 5.1.4 b Find the population standard deviation of the 
number of passengers carried per trip. 

1. The weights (kg) of two samples of bagged sugar taken 

from a production line. 

Sample from machine A: 3. The number of matches per box in a sample of boxes 

taken from a packing machine was: 
  1.95 1.94 2.02 1.94 2.07 1.95 

202 206 209 209 194 201 Matches 47 | 48 | 49 | 50 | 51| 52 
2.07 205 2.04 1.91 1.91 2.02 Frequency 3 6 1 19 | 12 9 

1.92 1.99 1.98 2.09 2.05 2.05 

1.99 197 197 195 193 203 Find the mean and sample standard deviation of the 
2.02 190 193 191 200 203 number of matches per box. 

1.94 200 202 202 2.03 1.96 

2.04 1.92 1.95 1.97 1.97 2.07 

  

                  

Sample from machine B: 4. ‘The weekly expenses paid to a group of employees of a 

small company were 
177 2.07 1.97 2.22 1.60 1.96 

1.95 2.23 1.79 1.98 207 232 $25 $0 $10 $10 $55 $0 

1.66 19 205 232 1.80 1.96 $12 $375  $75 $445  §7 $2 

2.06 1.80 1.93 1.91 193 225 

1.63 197 208 232 1.94 193 a Find the mean weekly expense. 

1.94 222 1.76 2.06 191 2:39 

1.98 206 202 223 175 195 4 b Find the population standard deviation of the 
1.80 1.95 2.09 2.08 2.29 expenses. 

a Find the mean weights of the bags in each 

sample. 

5; The table shows the numbers of cars per week sold by 

a dealership over a year. 
b Use the formula: S, =   

Cars sold 0 i 2 3 4 5 

  

  

Number of weeks 2 13 15 12 % 3                   to calculate the sample standard deviations of each 

  

  

  

              
  

  

                  

sample. 

a Find the mean weekly sales. 

c Use the formula: 6, = b Find the population standard deviation of the 

sales. 

to calculate the population standard deviations of each 6. The table shows the weekly turnover of a small shop 

sample. over a period during Spring and Summer. 

2. The following frequency table gives the numbers Sales ($) $0- | $100- | $200- | $300- 

of passengers using a bus service over a week-long $99 $199 | $299 $399 
period. Number of weeks 2 9 15 7 

10- | 15- [ 20- | 25- a Find the mean weekly sales. 
Passengers | 0-4 | 5-9 14| 19| 24 | 20 

Frequency | 3 5 11 15 | 10 7 b Find the population standard deviation of the 

sales. 

a Find the mean number of passengers carried 

per trip. 
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The frequency distribution of Mathematics and 

English test results at a local secondary school are 
shown in the table below: 

Test Scores 
  

  

  

  

  

  

  

  

  

    

Mark Mathematics English 

[0, 10[ 7 2 

[10, 20[ 11 5 

[20, 30( 13 11 

(30, 40[ 17 18 

[40, 50( 22 34 

[50, 60[ 22 34 

[60, 70( 16 20 

(70, 80[ 14 12 

[80, 90[ 11 2 

(90, 100] 7 2         

Draw a histogram showing the test scores for: 
i Mathematics i English. 

Draw a table of the cumulative frequencies for 

each of Mathematics and English. 

On the same set of axes draw the cumulative 

frequency graph for Mathematics and English 

scores. 

The pass mark for Mathematics is the lowest 

score obtained by 78% of the students. What 

is the minimum score required for a student to 

pass Mathematics? 

8. Doctors are under pressure to diagnose as many 
patients as possible, meaning that the session time 

they allocate to each patient is closely monitored. The 

table below shows the times that two doctors have 

spent with their patients. 

Session time distribution 
  

  

  

  

  

  

  

  

    

Number of sessions 
Time (minutes) 

Doctor A Doctor B 

5-9 5 3 

10-14 10 7 

15-19 23 x 

20-24 16 27 

25-29 12 9 

30-34 5 6 

35-39 3 2         

Extra questions 

Answers 

For doctor A, calculate the: 

mean session time. 

standard deviation of session times. 

Doctor B has misplaced the tally for the 
number of times she has seen patients for a 
period of 15-19 minutes. She decides that she 

should have the same mean as her colleague for 
the time spent seeing patients. What value of x 
should she use (to the nearest integer)? 

A third doctor at the clinic recorded an average 
of 22 minutes after seeing 60 patients. What is 

the overall mean time these three doctors spend 
with patients? 
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siolProbability 

Probability 

e are often faced with statements that reflect an 
element of likelihood, For example, “It is likely to rain 

later in the day” or “What are the chances that I roll a six?”. 
Such statements relate to a level of uncertainty (or indeed, a 

level of certainty). It is this element of likelihood in which 

we are interested. In particular, we need to find a measure of 
this likelihood — i.e. the associated probability of particular 
events. 

Our title picture is of the MV Explorer in Antarctica in 
December 2001. This voyage was completed safely. Several 

years later, the ship was holed and sank in Antarctic waters 

(with no injuries). How did the insurers calculate the 

premium due for the voyage? The answer is to be found in 

this and subsequent sections - and in experience. 

Roughly, the insurance industry argues: 

Number of accidents Probability of accident = Number of voyages 

The premium is decided by multiplying this probability by the 
amount insured and adding a profit margin. This is, of course, 
a considerable simplification of the very complex work of the 

insurance actuary. 

Probability as a long-term relative frequency 

An experiment is repeated in such a way that a series of 

independent and identical trials are produced, so that a 
particular event A is observed to either occur or not occur. 
We let N be the total number of trials carried out and n(A) (or 

|A|) be the number of times that the event A was observed. 

We then call the ratio 4 (or %} the relative frequency 
of the event A. 7   

This value provides some indication of the likelihood of the 

event A occurring. 

In particular, for large values of N we find that the ratio &Ié) 
tends to a number called the probability of the event A, 
which we denote by p(4) or P(4). 

As 0<n(4) <N, this number, P(4) , must lie between 0 and 

1 (inclusive), i.e. 0S P(A)< 1. 

A more formal definition is as follows: 

If a random experiment is repeated N times, in such a way 

that each of the trials is identical and independent, where 

n(A) is the number of times event A has occurred after N 

trials, then: 

AsN—)oc,flA’/‘—)—»P(A) 

It is possible to provide a graph of such a situation, which 

shows that as N increases, the ratio 22 tends towards some 
value p, where in fact, p = P(4). 

Such a graph is called a relative frequency graph. 

  

As far as our actuary is concerned, this demonstrates that the 
more information they have about a risk, the more reliable 
the premium calculation will be. 
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Theoretical probability 

‘When the circumstances of an experiment are always 

identical, we can arrive at a value for the probability of a 

particular event by using mathematical reasoning, often 

based on an argument reflecting some form of symmetry (i.e. 
without the need to repeatedly perform the experiment). This 
type of probability is called theoretical probability. 

Forexample, whenwerolladie, every possible outcome, known 

as the sample space, can be listed as U = {1,2,3,4,5,6} 
(sometimes the letter € is used instead of U). The probability 

of obtaining a “four” (based on considerations of symmetry 
of equal likelihood) is given by '/. Such a probability seems 
obvious, as we would argue that: 

“Given there are six possible outcomes and each outcome is 
equally likely to occur (assuming a fair die), then the chances 
that a 'four’ occurs must be one in six, i.e. /s 

Laws of probability 

We will restrict our arguments to finite sample spaces. 
Recall, that a sample space is the set of every possible 
outcome of an experiment, and that an event is any subset of 
the sample space. This relationship is often represented with a 

Venn diagram: 
u 

A 
The Venn diagram shows the 

sample A space U, with the event 
A, as a subset.   
Definition of probability 

If an experiment has equally likely outcomes and of these the 
event A is defined, then the theoretical probability of event 
A occurring is given by: 

‘Where n(U) is the total number of possible outcomes in the 

sample space, U, (i.e. n(U) = N). 

As a consequence of this definition we have what are known 
as the axioms of probability: 

1. 0<P(A)<1 

2. P(@)=0and P(U)= 

That is, if A= , then the event A can never occur. 

A=U implies that the event A is a certainty. 
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If A and B are both subsets of U and are mutually 
exclusive, then P(AU B)=P(A4)+P(V) 

‘A ) 
B‘ 

Note: Two events A and B are said to be mutually 

exclusive (or disjoint) if they have no elements 
in common, ie.if ANB = @, 

‘The sample spaceis U = {1,2,3,4,5,6}. Let A be the event 

‘obtaining a multiple of 3. 

  

      

‘WethenhavethatA={3,6}. Therefore, P(4) = 

  

Here B={1,3,5}andso P(B) = ——= = = = . 

In this case, A = {3, 6} and B = {1, 3, 5}, so that AN B = {3} 

Therefore, as A " B#@ A and B are not mutually exclusive. 

  

Let H denote the event a head is showing and T the event a 
tail is showing. This means that the sample space (with two 
coins) is givenby U = {HH, HT, TH, TT} . 

The event that two tails are showing is given by the event 
{TT}, therefore, we have that: 

_n({T7ThH _ 1 
PTT}) w0) 3 

The event that one tail is showing is given by { HT, TH} . 

n({HT. TH}) 1 
n(U) z” 

Therefore,: P({HT, TH}) = %



  

Let D denote the event ‘a diamond card is selected'. 

This means that n(D) = 13 as there are 13 diamond cards in 

a standard deck of cards. 

Therefore, P(D) = == = = = - 

Problem-solving Strategies in 

Probability 
‘When dealing with probability problems it is often useful to 
use some form of diagram to help ‘visualize' the situation. 

Diagrams can be in the form of: 

  

It is fair to say that some types of diagrams lend themselves 
well to particular types of problems. These will be considered 
in due course. 

  

In this instance, we make use 
of a lattice diagram to display 

all possible outcomes. From 
the diagram, we can list the 
required event (and hence find 

the required probability): 

  

PROBABILITY 

Let S denote the event 'A sum of seven is observed'. From the 
lattice diagram, we see that there are 6 possibilities where a 

sum of seven occurs. 

In this case:S = {(1,6),(2,5),(3,4),(4,3),(5,2). (6. 1)} . 

: S _6 _1 ‘Therefore: P(S) w0 366 

N R AN SRR T N o1 

Exercise 5.2.1 

1 From a bag containing 6 white and 4 red balls, a ball is 
drawn at random. What is the probability that the ball 
selected is: 

a red. b white. ¢ not white. 

2 From an urn containing 14 marbles of which 4 are blue 

and 10 are red, a marble is selected at random. What is 
the probability that: 

a the marble is blue. b the marble is red. 

3. A letter is chosen at random from the letters of the 
alphabet. What is the probability that: 

a the letter is a vowel. 

b the letter is a consonant. 

4. A coin is tossed twice. List the sample space and find 
the probability of observing: 

a two heads. 

b at least one head. 

5. A coin is tossed three times. List the sample space and 
find the probability that: 

a two heads show uppermost. 

b at least two heads show uppermost. 

o three heads or three tails are showing. 

6. Aletteris chosen at random from the word FERTILITY. 
Find the probability that the letter chosen is: 

a aT b an L. 

< a consonant. d avowel. 
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2. A bag has 20 coins numbered from 1 to 20. A coin is b three even numbers. 

drawn at random and its number is noted. What is the 

probability that the coin drawn has: c two odd numbers. 

a an even number on it? (Hint: You may need to draw a three-dimensional 
lattice diagram.) 

b has a number that is divisible by 32 
Scottish Widows One of the first life insurance companies in 

c has a number that is divisible by 3 or 5 the world was set up in 1812 to care for widows and orphans. 
Their plan was to collect premiums to create a capital fund. 

8. A die is rolled twice. Use a lattice diagram to illustrate ‘The pensions would be paid from the interest generated by 

the sample space. What is the probability of observing: the fund. The capital was intended to be preserved. 

a at least one five. b afourand a three. They got their calculations right and are trading to this day. 

c apair. d a sum of eight. This advertisement dates from 1878. 

9. A family has three children. List the sample space and 

hence find the probability that: 

a there are 3 boys. 

b there are 2 boys and 1 girl. 

c there are at least two girls. 

10. A card is selected from a pack of 52 cards. Find the 
probability that the card is: 

a red b aheart 

c red and a heart. 

11. A cube is drawn at random from an urn containing 16 
cubes of which 6 are red, 4 are white and 6 are black. 

Find the probability that the cube is: 

a red b white 

c black d red or black. 

12. A coin is tossed and a die is rolled simultaneously. 

Draw a lattice diagram to depict this situation. 

  

a Using your lattice diagram, list the sample 

space. 

b What is the probability of observing a tail and 
an even number? 

Answers 

13. A die is rolled three times. Find the probability of 

observing: 

  

a three sixes. 
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Our title picture is Las Vegas by night - World capital of gambling and heavily reliant on probability theory. 

From the axioms of probability we can develop further rules to help solve problems that involve chance. We illustrate these 

rules with the aid of Venn diagrams. 
  

  

by A" 
belong to the set A. 

  

Event Set language Venn diagram Probability result 

A'is the complement P(A")=1-P(A) 
The complement |\, o et 4, ie. the set 
of A is denoted . 

of elements that do not A P(A’) is the probability that event A does not 

  
occur. 

  

The intersection 
of 

AandB: AnB 

AN B is the intersection 

of the sets A and B, i.e. 
the set of elements that 

belong to both the set A 
and the set B. 

  

  

P(ANB) is the probability that both A and 
B occur. 

  

The union of 

events A and B : 

AVB 

AV B is the union of the 
sets A and B, i.e. the set of 
elements that belong to A 

or B or both A and B. 

  

  

P(AU B) is the probability that either event 
A or event B (or both) occur. From this we 

have what is known as the ‘Addition rule’ for 

probability: 

P(AU B)=P(A)+P(B)-P(AN B) 
  

If ANB=D the 
events A and B are 
said to be disjoint. 

‘That is, they have 
no elements in 
common.     If AnB=@ the sets 

A and B are mutually 
exclusive. 

            If A and B are mutually exclusive events 

then event A and event B cannot occur 
simultaneously, i.e. 

n(4AnB)=0 

=P(ANB)=0 

Therefore P(AU B)=P(A)+P(V)   
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Although we now have a number of ‘formulae’ to help us 
solve problems that involve probability, using other forms of 

diagrams to clarify situations and procedures should not be 

overlooked. 

  

Let B be the event ‘A black card is selected and K the event ‘A 

king is selected’. 

We first note that event B has as its elements the Jack of spades 

(J&), the Jack of clubs (J#), the Queen of spades (Qa), the 

Queen of clubs (Q) and so on. This means that: 

B = (K&, K&,QaA,Q,]4,]%,104,104,94,9%,84,8%,74,7%, 

6A6%,50,58,40,4%,.38,38,2424 AN A%} and 

K={Ka,Kv,K&, Ko}, sothat BN K = {Ka, Ka}. 

Usingtheadditionrule, (B UK) = P(B) + P(K)-P(BNK) 

26,4 2 7 =2048 2 wehave P(BUK) = S5+ 5-5 = 3. 

2 
Note the importance of subtracting 57 as this represents the 

fact that we have included the event {Ka, K&} twice when 

finding Band K. 

‘We now consider one of the problems from Exercise 5.2.1, 

(no. 7) but this time we make use of the addition rule. 

  

Let T denote the event “The number is divisible by 3” and S, 
the event “The number is divisible by 5” 

Using the addition rule we have: 

P(TUS) = P(T)+P(S)-P(TNS) 

Now, 7T ={3,6,9,12,15,18} and S = {5,10,15,20} so 

that TS = {15}. 

-6 =Y, Therefore, we have P(T) = 2 and P(S) 35 
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and P(TAS) = % 

This means that P(T'U S) = 5,4 1_09, 
20 20 20 20 

. _____________] 

  

a Using the addition formula, we have: 

P(AUB)=P(A)+P(B)-P(ANB) 

=06+03-02 

=07 

b Using the complementary formula: P(2')=1-P(Z5) 

=1-03 

=07 

c To determine P(ANB’), we need to use a Venn 

diagram: 
  

  

  

        
    

  

                

Using the second Venn diagram we are now in a position to 

form a new formula: 

P(ANB')=P(A)-P(ANB) 

=06-02 

=04 

  
We begin by drawing a tree diagram to describe the situation:



  

Firsttoss  Second Third 

  

From the tree diagram we have a sample space made up of 

eight possible outcomes: 

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

Let X be the event “Obtaining three tails’, so X = {TTT}. 

Therefore P(X) = % 5 

Although we can answer this question by using the tree 

diagram, we make use of complementary events to solve this 

problem. 

Notice that 'At least one head' is the complement of no heads. 

So, P(At least one head) =P(X")=1-P(X)=1 —% :% ; 

R e T T R R L S 

Exercise 5.3.1 

1. A letter is chosen at random from the letters of the 
word TOGETHER. 

a Find the probability of selecting a T. 

b Find the probability of selecting a consonant. 

c Find the probability of not selecting an E. 

2. A card is drawn at random from a standard deck. 

a Find the probability that the card is an ace. 

b Find the probability that the card is black. 

c Find the probability that the card is an ace and 
black. 

d Find the probability that the card is an ace or 

black. 

OBABILITY 

A letter is selected at random from the alphabet. Find 
the probability that the letter is a vowel or comes from 
the word ‘helpful’ 

The events A and B are such that P(4) = 0.5, 

P(B) = 0.7 and P(AnB) = 02. 

Find: 

a P(AUB). 

b P(B'). 

c P(A'NB). 

The events A and B are such that p(4) = 0.35, 

p(B) = 05 and p(4An B) = 0.15. 

Using a Venn diagram (where appropriate), find: 

a pA’). 

b p(AUB). 

¢ pAUB). 

The events A and B are such that p(4) = 045, 

p(B) = 0.7 and p(4n B) = 0.20. 

Using a Venn diagram (where appropriate), find: 

a  pduB). 

b p(A4'NnB). 

c p(ANB)). 

A coin is tossed three times. 

= Draw a tree diagram and from it write down the 

sample space. 

b Use the results from part a to find the probability 
of obtaining: 

i only one tail. 

i at least 2 tails. 

iii 2 tails in succession. 

v 2tails. 
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Inaclass of 25 students it is found that 6 of the students 

play both tennis and chess, 10 play tennis only and 3 

play neither. A student is selected at random from this 
group. 

Using a Venn diagram, find the probability that the 

student: 

a plays both tennis and chess. 

b plays chess only. 

c does not play chess. 

Ablueandared diearerolled together (both numbered 

one to six). 

a Draw a lattice diagram that best represents this 

experiment. 

b Find the probability of observing an odd 
number. 

c Find the probability of observing an even 

number with the red die. 

d Find the probability of observing a sum of 7. 

e Find the probability of observing a sum of 7 or 

an odd number on the red die. 

A card is drawn at random from a standard deck of 

52 playing cards. Find the probability that the card 
drawn is: 

a a diamond. 

b aclub or spade. 

c ablack card or a picture card. 

d ared card or a queen. 

A and B are two events such that P(4) = p, 
P(B) = 2p and P(4 N B) = p2. 

a Given that P(4 U B) = 0.4, find p. 

b Use a Venn Diagram to help you find the 

following: 

i P(4"UB). 

ii P(A'nB). 

12. 

13. 

In a group of 30 students 20 hold an Australian 
passport, 10 hold a Malaysian passport and 8 hold both 

passports. The other students hold only one passport 
(that is neither Australian nor Malaysian). A student is 

selected at random. 

a Draw a Venn diagram which describes this 

situation. 

b Find the probability that the student has both 

passports. 

c Find the probability that the student holds 

neither passport. 

d Find the probability that the student holds only 

one passport. 

This aircraft has one piston engine. 

  
Answers 

The engine has four horizontally opposed cylinders. 

Each cylinder has two spark plugs. 

The two sets of spark plugs are connected to separate 

ignition systems (magnetos). 

The fuel is stored in wing tanks. As the tanks are below 

the engine, there is no gravity feed. There are, however, 
two fuel pumps. One is mechanical (driven by the 

engine) and the other is electrical and can be turned 
on and off by the pilot. 

Discuss how these two features and the principles of 

probability, make this aircraft safer than it would be if 
it was powered by a car engine. 

 



  

l Every living creature owes its existence to the fact that its 
parent(s) existed. The koala in our picture can only sleep 

in the sun because a condition was fulfilled. 

Informal Definition of 

Conditional Probability 
Conditional probability works in the same way as simple 
probability. The only difference is that we are provided with 

some prior knowledge (or some extra condition about the 

outcome). So, rather than considering the whole sample 
space, €, given some extra information about the outcome of 
the experiment, we only need to concentrate on part of the 

whole sample space, €". This means that the sample space is 
reduced from ¢ to €. Before formalizing this section, we use 
an example to highlight the basic idea. 

  

a This part is solved using the methods of the previous 

section: U={1,2,3,4,5,6},and so P(‘2") ="/s. 

b This time, because we know that an even number 

has occurred, we have a new sample space, namely 

U= {2, 4, 6}. The new sample size is n(U’). 

P(2’ given that an even number showed up) ="/ . 

Formal Definition of Conditional 
Probability 

If A and Bare two events, then the conditional probability 
of event A given event B is found using: 

P(4nB) 
P(4|8)= ) LP(B)#0 

Note: 

1. If A and B are mutually exclusive then: P(4|8)=0 

2 From the above rule, we also have the general 
Multiplication rule: 

P(AN B)=P(A|B)xP(B). 

It should also be noted that usually P(A|8)#P(5]4). 

  

We first draw a lattice diagram: 
12 3 4 5 6 

From the diagram we see 
that the new sample space 

is made up of 21 outcomes 

(boxes) and the event we 

want (red boxes) consists of 

4 outcomes. 

  

o
t
 

e
 
W
 

= 
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HAPTER 5 > 3 

4 21 
= < =i < = Then, P((X=5) N (X< 7)) 3% and P(X<7) 3 

4 
Therefore, P(Y=5]x<7) = 20 = & 

2 2 
36 

  

Let A be the event 'the first cube is red' and B be the event 'the 

second cube is red". This means that the event 4 N B must be 

'both cubes are red'. 

Now, P(A) =2/ = /5 (as there are 2 red cubes from a total of 6 

cubes in the box). The value of P(B) depends on whether the 

selection is carried out with or without replacement. 

a If the first cube selected is red and it is not replaced, 

then we only have 1 red cube left in the box out of a 
total of five cubes. 

So, the probability that the second cube is red given that the 

firstis red is '/s. 

That is: 

X p(BM):%dP(AmB) = P(BJA)x P(4) = % 

oi
i—
 

L
l
 

b This time, because the cube is replaced, the probability 
that the second cube is red given that the first one is 
red is still '/5. 

So that: 

P(B|A)=%=7P(A AB) = P(B|4)x P(4) = 111 
373 9- 

  

P(4|B) = % , therefore we need to find P(4 N B). 

Using the addition rule we have: 

P(4UB) = P(4) +P(B)~P(4 N B) 

0.6=05+0.3-P(4NB) 

L PANB) =02 

So.  PUIB) = BB 

P(4) 0.5 

Independence 

The events A and B are said to be statistically independent if 
the probability of event B occurring is not influenced by event 

A occurring. 

Therefore we have the mathematical definition: 

    
However, a more convenient definition for independence can 
be given as follows: 

    
This definition can be used as a test to decide if two events 

are independent. However, as a rule of thumb, if two events 

are ‘physically independent’ then they will also be statistically 
independent. 

There are a few points that should always be considered when 

dealing with independence: 

1 Never assume that two events are independent unless 

you are absolutely certain that they are independent. 

2. How can you tell if two events are independent? A good 
rule of thumb is: If they are physically independent,



  

they are mathematically independent. 

3. Make sure that you understand the difference between 

mutually exclusive events and independent events. 

Mutually exclusive means that the events A and B have 
nothing in common and so there is no intersection, 

ie.ANB=D=PANB)=0. 

Independent means that the outcome of event 

A will not influence the outcome of event B, 

i.e.P(ANB)=P(A)xP(B) 

4. Independence need not be for only two events. It 

can be extended, i.e. if the events A, B and C are each 
independent of each other then: 

P(ANBNC)=P(A)xP(B)xP(C) 

5. Showing that two events, A and B, are independent, 
requires three steps: 

Step1  Evaluate the product P(4) x P(B). 

Step2  Determine the value of P(4 N B) using any means 
(other than step 1), ie. use grids, tables, Venn 
diagrams, . . . i.e. you must not assume anything 
about A and B. 

Step 3 If the answer using Step 1 is equal to the answer 
obtained in Step 2, then and only then will the 
events be independent. Otherwise, they are not 
independent. 

Notice that not being independent does not therefore 
mean that they are mutually exclusive. They simply aren’t 

independent. That's all. 

6. Do not confuse the multiplication principle with the 

rule for independence: 

Multiplication principle is P(AN 8)=P(A|8)xP(5). 

Independence is given by P(ANB)=P(A)xP(B). 

Let the £, and E, denote the events 'An even number on the 
first die.' and'An even number on the second die.' respectively. 
In this case, the events are physically independent, i.e. the 

outcome on one die will not influence the outcome on the 

other die, and so we can confidently say that £, and E, are 
independent events. 

‘Therefore, we have: 

P(E, and Ey) = P(E; \Ey) = P(E\)XP(Ey) = 5% = 

  

a Let W, denote the event 'Debra wins the 100 m race' 

and 17, , the event 'Debra wins the 200 m race’. 

If Debra wins only one race she must either: 

win the 100 m and lose the 200 m or 

win the 200 m and lose the 100 m. 

That is, we want: 

POV, A Wy) = P(W) x P(Wy') = 0.7x04 = 028 

or we can multiply the probabilities because the events are 

independent (why?): 

P(Wy A W) = POW) X POW,") = 0.6X03 = 0.15. 

‘Therefore, the required probability is 0.28 + 0.18 = 0.46 

Notice that if #, and W, are independent, then so too are 
their complements. 

b Winning both races means that Debra will win the 100 
m and 200 m race. 

Therefore, we have: 

P(W, A 7y) = POW,) X P(I,) = 0.7x0.6 = 0.42. 

Notice how we have made repeated use of the word ‘and’. This 
emphasizes the fact that we are talking about the intersection 

of events. 
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a Let G; denote the event that the i th seed germinates. 

This means that P(G ) = P(G,) = P(G3) = P(G,) = 0.8 

It is reasonable to assume that each seed will germinate 

independently of the other. 

‘Therefore, P(All four seeds germinate) = 

P(G; MGGy Gy) =P(G))x P(Gy) X P(G3) X P(Gy) 

=(08)* 

=0.4096 

b Now, P(At least one seed will germinate) = 1 - p(No 

seeds germinate). 

P(Any one seed does not germinate) = P(G,) =0.2 

‘Therefore, P(At least one seed will germinate) = 1 - (P(G;))* 
=1-(02)% = 09984 

  

We begin by drawing a diagram of the situation: 
Stage 1 Stage 2 

After the first selection the bag would 
contain one of the situations shown: Select one ball 

Ce CellCe 
From our diagram we notice that there are two possible 

sample spaces for the second selection. 

Asanaid, we make use ofa tree diagram, where ¥, denotes the 

event 'A white ball is selected on the ith trial' and R; denotes 
the event 'A red ball is selected on the ith trial'. 

The event ‘Only one white' occurs if the first ball is white and 
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the second ball is red, or the first ball is red and the second 
ball is white. 

  

      

Wy W 5.4_20 Wi o 5,420 
¢ 5%3 "7 

s | 4w 4R 
i O @ 

4 5.4.20 
SW 4R bRy 978 72 

s WalRy 4.5 20 
98 % 

3 5W 3R 
9 RI 

2 431 
YRR TR M 

P(One White ball) = PO, A Ry) + P(R, (3 ¥3) 
= P(R,| W) x P(W)) + PO, | Ry) X P(R)) 

5.4 :45 o X5HEXG 
98 

Exercise 5.4.1 

1. Two events A and B are such that p(A) = 0.6, p(B) = 
0.4 and p(4 N B) = 0.3. Find the probability of the 
following events. 

a AUB b A|B 

c B4 d A|B’ 

2 A and B are two events such that p(4) = 0.3 

p(B) =05 and p(A4UB) =055, Find the 

probability of the following events: 

a A|B b BlA 

c A|B" d A\’ 

3. Urn A contains 9 cubes of which 4 are red. Urn B 
contains 5 cubes of which 2 are red. A cube is drawn at 
random and in succession from each urn. 

a Draw a tree diagram representing this process. 

b Find the probability that both cubes are red. 

c Find the probability that only 1 cube is red. 

d If only 1 cube is red, find the probability that it 
came from urn A.



A box contains 5 red, 3 black, and 2 white cubes. A 

cube is randomly drawn and has its colour noted. The 
cube is then replaced, together with 2 more of the 
same colour. A second cube is then drawn. 

a Find the probability that the first cube selected 

is red. 

b Find the probability that the second cube 
selected is black. 

c Given that the first cube selected was red, what 

is the probability that the second cube selected 

is black? 

A fair coin, a double-headed coin and a double-tailed 

coin are placed in a bag. A coin is randomly selected. 

The coin is then tossed. 

a Draw a tree diagram showing the possible 
outcomes. 

b Find the probability that the coin lands with a 
tail showing uppermost. 

c In fact, the coin falls 'heads', find the probability 

that it is the 'double-headed' coin. 

Two unbiased coins are tossed together. Find the 
probability that they both display heads given that at 

least one is showing a head. 

A money box contains 10 discs, 5 of which 
are yellow, 3 of which are black and 2 green. 

Two discs are selected in succession, with the first disc 

not replaced before the second is selected. 

a Draw a tree diagram representing this process. 

b Hence find the probability that the discs will be 
of a different colour. 

c Given that the second disc was black, what is 

the probability that both were black? 

Two dice are rolled. Find the probability that the faces 
are different given that the dice show a sum of 10. 

Given that p(4) = 0.6, p(B) = 0.7 and that A and B 

are independent events. 

Find the probability of the events: 

a AUB b ANB 

c A|B d ANB 

11. 

13. 

14, 

Extra questions 

L FROBABILITY 

  

The probability that an animal will still be alive 

in 12 years is 0.55 and the probability that 

its mate will still be alive in 12 years is 0.60. 
Find the probability that: 

a both will still be alive in 12 years. 

b only the mate will still be alive in 12 years. 

c at least one of them will still be alive in 12 years. 

d the mate is still alive in 12 years given that only 

one is still alive in 12 years. 

Tony has a 90% chance of passing his maths test, whilst 

Tanya has an 85% chance of passing the same test. If 
they both sit for the test, find the probability that: 

a only one of them passes. 

b at least one passes the test. 

c Tanya passed given that at least one passed. 

The probability that Roger finishes a race is 0.55 and 
the probability that Melissa finishes the same race is 
0.6. Because of team spirit, there is an 80% chance that 
Melissa will finish the race if Roger finishes the race. 
Find the probability that: 

a both will finish the race. 

b Roger finishes the race given that Melissa 
finishes. 

If A and B are independent events, show that their 

complementary events are also independent events. 

A student runs the 100 m, 200 m and 400 m races 

at the school athletics day. He has an 80% chance of 
winning any one given race. Find the probability that 

he will: 

a win all 3 races. 

b win the first and last race only. 

c win the second race given that he wins at least 
two races. 
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Bayes' Theorem 

Law of total probability 

Using the Venn diagram, for 
any event A, we have that 

A=Ange=A4An(BUB) 

=(ANB)U(ANB’) 

  

  
As these two events are mutually exclusive, we have: 

P(4) = P(AnB)+P(ANB") 

However, 

P(4NnB) PUIB) = =5 =P(4NB) = P(B)xP(|B) and 

P(AIB)) = Pig(;—,‘fLaP(A AB') = P(B) X P(A|B) » 

which leads to the Law of Total Probability. 

Although this expression 
may look daunting, in 

fact, it represents the 
result that we would 

obtain if a tree diagram 
was used. 

      

We begin by setting up a tree diagram, where B; denotes 
the event “A Black cube is observed on ith selection” and W; 
denotes the event “A White cube is observed on ith selection”. 

leWl»BzfiWl 

Bz‘B] — BzfiBl 

  

1 

A black cube could have been observed on the second 

selection if: 
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i the first cube selected was white (i.e. B, | ")), or 

i the first cube selected was black (i.e. B, B, ). 

‘Therefore, P(B,) = P(By 2 W}) + P(By  B)) 
Lot 32 

10770 10°10 
= A7 

50 
T C T ey T 

Bayes’' Theorem for two events 

As we saw earlier, conditional 

probability provides a means 

by which we can adjust the 
probability of an event in 
light of new information. 
Bayes' Theorem, developed 
by Rev. Thomas Bayes, 

pictured, (1702-1761), does 

the same thing, except this 
time it provides a means of 

adjusting a set of associated 
probabilities in the light of 
new information. 

  

For two events, we have: 

  

Again, the formula may seem daunting, however, it is only 
making use of a tree diagram. 

    Following on from the previous example, we have the same 

tree diagram: 

By| W\ == By W, 

| Wi == W, 
legl» BynB, 

  

W[ By = Wy 0B,



  

‘We require: P(Both white given that both are of the same 

colour) 

Now, the probability that they are of the same colour is given 

by the probability that they are both white or both black, i.e. 

P(Wy A W)U (B, BY)) - 

Next: P(Both White given both are the same colour) 

= POV, O |(W, 0 W) U (B, 0 B)) 

PO ) O (A W) U (By N B)) 
P((Wyn W)U (ByNBy)) 

P(W, N W)) 
P(Wy W)+ P(By B)) 

PO, | ) X POW)) 

6.7 
_ 10*10 

6. 7.2.3 
10770 716 %10 

=7 
8 

  

BIA 
Let the event A denote the event 

‘driver wears a seatbelt' and B 

denote the event 'Driver speeds’. 
Using a tree diagram we have: 

  

We need to find, Pr(Driver was wearing a seatbelt| driver was 
booked for speeding): 

= P(AIB) = flfi 
P(4) X P(B,4) 

ONDITIONAL 

Bayes' Theorem for three events 

So far we have used Bayes' Theorem for the case when the 
sample space is partitioned in two events, A and A”, where 
AUA’ = U. However, this can be easily extended to the 
situation when the sample may be partitioned into many 
events. That is, 4, U4, U 43U ... U4, = U where each of 
the events 4; are mutually exclusive. 

So, let’s consider the case when there are 3 events, so that the 

event A can be partitioned into three exhaustive, mutually 
exclusive subsets, i.e. B = (BNA) U (BNA,) U (BNA;). 

B4, :. 

B, :. 

Bndy :. 

  

‘Then, 

P(B) = P(BNA) U (BN4y) U (BNAy) 

= P(BnA))+P(BNAy) +P(BNA3) 

SPEOA)  pay+ B0 gy 
P(4)) b P(4,) T 

P(BNA 
(P—(z43)3_)>< P(43) 

=P(B|A,)XP(4)+P(B|4,) xP(4,)+ P(Bld3)xP(45) 

‘Therefore, we have that: 

P(4,|B)= 

_P(4,nB) 
P(B) 

P(B|4,) X P(4,) 

TP(BIA,) % P(A,) + P(B|A,) % P(Ay) + P(BIA3) % P(d3) 

As daunting as this expression may appear, all that we have 
done is add a new branch to our existing tree diagram. 
Everything remains the same. Making use of a tree diagram 

to help us evaluate the required probabilities is always useful. 
Such a diagram would have the following structure: 

BlA,—> A, OB .. .P(B|4)xP(4)) 

  

P(A) X P(B[A) + P(4") x P(B|4’) 
09%02 _18 

09%02+0.1x06 24 
So, P(that a driver who was booked for speeding was in fact 

wearing a seatbelt) = 0.75 

AI 

Bldy—> Ay (B -P(BIAy)xP(4y) 
AZ 

Ay Bldy—> A3 B -P(B|43) XP(43) 
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Using the notation just discussed, we let 4, denote the event 

'Patient has disease in serious form', 4, denote the event 

'Patient has disease in mild form' and 4; denote the event 

‘Patient does not have the disease’. Let B denote the event 

‘Records positive blood test'. 

This gives,P(4;) = 0.02, P(4,) = 0.05 and P(43) = 0.93 

P(B|4)) = 0.92, P(B|4,) = 0.60, P(B|43) = 0.10 

Then, as: 
P(B)=P(B|A) X P(d)) + P(B|4,) X P(4y) + P(B|43) X P(45) 

=0.92%0.02 + 0.6 x 0.05 +0.10 x 0.93 

—0.1414 

Using Bayes’ Theorem, we have: 
P(4,NB) 

PN - 5 
_ P(B|4))P(4,) 
" P(BIA) X P(A]) + P(BIA;) X P(A;) + P(B|A3) x P(d3) 

_ 092%0.02 
0.1414 

= 0.1301 

Of course, we could have drawn a tree diagram to help with 
the example above: 

As in the case for two events, drawing a tree diagram works 

very well. However, one needs to make sure to allocate the 
correct probabilities to the correct branches. 

Next we consider a problem with three consecutive events 

producing three levels of branches, each identifying two 
possible outcomes. 
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Let ‘D’ denote the event that a person has the disease, ‘P’ 
denote the event that a person will produce a positive reading 

and ‘R’ the event that the person develops a rash. 

From the given information, we can produce the following 

tree diagram (leaving out irrelevant information): 

 



  

_P(DNR) 
P(R) 

_ 0.08 x 0.90 x 0.40 
0.08 % 0.90 x 040 + 0.92 X 0.30 x 0.40 

P(DIR) 

=0.2069 

Again, notice how a tree diagram was most helpful in 
producing a neat and compact solution. 

e L B & BRI T) 

Exercise 5.4.2 

1. Machine A produces 40% of the daily output of a 
factory but 3% of the items manufactured from this 

machine are defective. Machine B produces 60% of the 

daily output of the same factory but 5% of the items 

manufactured from this machine are defective. 

a An item is selected at random. Find the 

probability that it is defective. 

b An item is selected and is found to be defective. 

Find the probability that it came from machine 
B. 

2 At the Heights International School, it is found that 
12% of the male students and 7% of the female students 

are taller than 1.8 m. Sixty per cent of the school is 

made up of female students. 

a A student selected at random is found to be 

taller than 1.8m. What is the probability that 
the student is a female? 

b A second student selected at random is found 

to be shorter than 1.8m. What is the probability 
that the student is a male? 

3. A box contains 4 black cubes and 6 white cubes. A 

cube is drawn from the box. Its colour is noted and 

a cube of the other colour is then added to the box. A 
second cube is then drawn. 

a If both cubes are of the same colour, what is the 

probability that both cubes were in fact white? 

b The first cube is replaced before the second cube 
is added to the box. What is the probability that 
both cubes were white given that both cubes 
were of the same colour? 

An urn, labelled A, contains 8 cards numbered 1 

through 8 whilst a second urn, labelled B, contains five 
cards numbered 1 through five. An urn is selected at 
random and from that urn a card is selected. Find the 

probability that the card came from urn A given that it 
is an even numbered card. 

An event A can occur only if one of the mutually 
exclusive events B, By or By occurs. Show that 

P(4) = 
P(B)) X P(A|B)) + P(B,) x P(4|By) + P(B3) X P(4|B3) 

Of the daily output, machines A and B produce items 

of which 2% are defective, whilst machine C produces 

items of which 4% are defective. Machines B and C 

produce the same number of items, whilst machine A 

produces twice as many items as machine B. 

i An item is selected at random. Find the 

probability that it is defective. 

ii An item is selected and is found to be defective. 
Find the probability that it came from machine 

B. 

A box contains N coins, of which m are fair coins 

whilst the rest are double-headed coins. 

a A coin is selected at random and tossed. 

i ‘What is the probability of observing a head? 

il Given that a head was observed, what is the 

probability that a double-headed coin was 
selected? 

b This time, a coin is selected at random and 

tossed n times. What is the probability that it is 

a fair coin, if it shows up heads on all n tosses? 

A population of mice is made up of 75% that are 

classified as ‘M+, of which, 30% have a condition 

classified as ‘N-. Otherwise, all other mice have 

the ‘N-’ condition. A mouse selected at random is 
classified as having the ‘N-" condition. What is the 
probability that the mouse comes from the M+ 

classification group? 

A survey of the adults in a town shows that 8% have 

liver problems. Of these, it is also found that 30% 

are heavy drinkers, 60% are social drinkers and 10% 

are non-drinkers. Of those that did not suffer from 

liver problems, 5% are heavy drinkers, 65% are social 
drinkers and 30% do not drink at all. 
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a An adult is selected at random. What is the 

probability that this person is a heavy drinker? 

b If a person is found to be a heavy drinker, what 

is the probability that this person has liver 
problems? 

c Ifa person is found to have liver problems, what 
is the probability that this person is a heavy 
drinker? 

d If a person is found to be a non-drinker, what 

is the probability that this person has liver 
problems? 

9: The probability that a person has a deadly virus is 5 
in one thousand. A test will correctly diagnose this 
disease 95% of the time and incorrectly on 20% of 
occasions. 

a Find the probability of this test giving a correct 

diagnosis. 

b Given that the test diagnoses the patient as 

having the disease, what is the probability that 
the patient does not have the disease? 

c Given that the test diagnoses the patient as not 
having the disease, what is the probability that 

the patient does have the disease? 

10.  The probability that a patient has a virus is 0.03. A 
medical diagnostic test will be able to determine 
whether the person in question actually has the 
virus. If the patient has the virus, the medical test 
will produce a positive result 90% of the time whilst 
if the patient does not have the virus, it will produce a 
negative result 98% of the time. 

a What proportion of all tests provide a positive 
result? 

b If the test shows a positive result, what is the 
probability that the patient actually has the 

virus? 

c If the test shows a negative result, what is the 
probability that the patient does not have the 

virus? 

Extra questions 
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Using Permutations and 

Combinations in Probability 
Because enumeration is such an important part of finding 

probabilities, a sound knowledge of permutations and 
combinations can help to ease the workload involved. 

  

The total number of arrangements of all 8 books is 8! = 40320 

To determine the number of <e—— §books —» 
arrangements that contain the ERER B 

= three maths books together we 
make use of the box method: 3books 

   

We now have 6 boxes to arrange, giving a total of 6! 

arrangements. 

However, the three maths books (within the blue box) can 

also be arranged in 3! ways. 

Therefore, there are 6! X 3! = 4320 ways this can be done. 

    _6Ix3! _ 6!x3! 
So, P(maths books are together) = 30 TxTx6l 

=_6 
8x7 

=3 
28 

  

The possibilities are: 

  

Boys | Girls No. of Selections 

3 5 (g)x(g) = 840 

o0 
1o 50 

  

  

  

        
 



  

The total number of committees with at least 3 boys is 840 + 

420 +56 = 1316 

However, the total number of committees of 5 from 14 is 

14) _ ; [ ) = 2002 

If X denotes the number of boys on the committee, then 
1316 94 S A o e 

PA3) = 500 13 

  

Exercise 5.4.3 

1. Five red cubes and 4 blue cubes are placed at random 

in a row. Find the probability that: 

a the red cubes are together. 

b both end cubes are red. 

c the cubes alternate in colour. 

2. Five books of different heights are arranged in a row. 
Find the probability that: 

a the tallest book is at the right-hand end. 

b the tallest and shortest books occupy the end 
positions. 

c the tallest and shortest books are together. 

d the tallest and shortest books are never next to 

each other. 

3. Three cards are dealt from a pack of 52 playing cards. 
Find the probability that: 

a two of the cards are kings. 

b all three cards are aces. 

c all three cards are aces given that at least one 

card is an ace. 

4. The letters of the word LOTTO are arranged in a row. 

What is the probability that the Ts are together? 

5. A committee of 4 is to be selected from 7 men and 6 

women. Find the probability that: 

a there are 2 women on the committee. 

b there s at least one of each sex on the committee. 

6. A basketball team of 5 is to be selected from 12 players. 

Find the probability that: 

a the tallest player is selected. 

b the captain and vice-captain are selected. 

¢ either one, but not both of the captain or vice- 

captain are selected. 

7 Find the probability of selecting one orange, one apple 

and one pear at random without replacement from a 
bag of fruit containing five oranges, four apples and 

three pears. 

8. Three red cubes, four blue cubes and six yellow cubes 
are arranged in a row. Find the probability that: 

a the cubes at each end are the same colour. 

b the cubes at each end are of a different colour. 

9. A sample of three light bulbs is selected from a box 

containing 15 light bulbs. It is known that five of the 
light bulbs in the box are defective. 

a Find the probability that the sample contains a 
defective. 

b Find the probability that the sample contains at 

least two defectives. 

10.  Eight people of different heights are to be seated in a 

row. What is the probability that: 

a the tallest and shortest persons are sitting next 
to each other? 

b the tallest and shortest occupy the end 

positions? 

c there are at least three people sitting between 

the tallest and shortest? 

Extra questions. 

Answers  



HAPTER 5 } : 

If each 'go’ takes ten seconds, this is: 

Theory of Knowledge 
  

  

  

  

10% o 
=1.7x10" minutes 

Very large numbers and Shakespeare 

It has been said that a roomful of monkeys bashing randomly G 
: 1.7x10 . 

at keyboards will evetually type out the complete works of or =1.7x10” hours 

‘William Shakespeare. 

2 
or MXI07 5ot days 

o 
op X0 =32x10" years 

365 

Since the age of the universe is estimated to be 1.4x10" years, 
it is clear that, even with an army of monkeys typing away 
frantically, we would stand no chance at all of assembling this 
one famous quote. 

Very large numbers turn up from time to time in these 
probability calculations. When you find one, is it 'real'? 

  

Is this so? 

My keyboard has about 50 keys. 

Suppose we set about waiting for our monkey to type "To be 

or not to be, that is the question". 

  

With spaces, this is 40 characters. The key presses are 

independent, and so the chance of getting the whole of this 
bit right on a single 'go’ is: 

[;loJm _— 

The number of 'go’s needed to type all these permutations is 
the reciprocal of this number or 10%. 

1f our monkey got very lucky, it might get the right answer in 
one thousandth of this number, or 10% 'go’s. 

How long would this take? 

282



  

    
Discrete Random Variables 

Concept of a random variable 

Consider the experiment of tossing a coin twice. The 

sample space, S, (i.e. the list of all possible outcomes) of 

this experiment can be written as $ = {HH, HT, TH, TT}. 

‘We can also assign a numerical value to these outcomes. For 

example, we can assign the number 

0 to the outcome {HH}, 

1 to the outcomes {HT, TH} and 

2 to the outcome {TT}. 

These numerical values are used to represent the number of 
times that a tail was observed after the coin was tossed. 

The numbers 0, 1 and 2 are random in nature, that is, until 

the coins are tossed we have no idea as to which one of the 

outcomes will occur. We define a random variable as follows: 

A random variable, X (random variables are usually denoted 

by capital letters), which can take on exactly n numerical 
values, each of which corresponds to one and only one of 

the events in the sample space is called a discrete random 
variable. 

Note that the values that correspond to the random variables 

X, Y, Z ... are denoted by their corresponding lower case 

letters, x, ¥, z ... For the example above, X = {x: x =0, x = 1, 

x=2} 

F} v A I 

e 

Discrete random variable 

A discrete random variable is one in which we can produce 
a countable number of outcomes. X of these discrete random 
variables are usually associated with a counting process. For 

example, the number of plants that will flower, the number of 
defective items in a box or the number of items purchased at 

a supermarket store. 

We can display this concept using a simple diagram such as 

the one below: 

Sample space  Random variable 

€ (outcome) 

X P(X=x) 

Probability 

  

We write 

“The probability that the random variable 
X=xisp as: 

P(X=x)=p. 

Note that the probability of any event must 
always lie between 0 and 1, inclusive. 

To obtain the sample space, we may need to carry out an 

experiment. However, as we shall see, there are many types 
of random variables that already possess their own sample 
spaces, random outcomes and associated probability values. 

We shall deal with these later. 
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In the experiment of tossing a coin three times the sample 

space is given by 

S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}, 

where the event {HTH] represents the observation, head, tail, 

head, in that order. 

This means that on any one trial of this experiment, we could 
have obtained 0 heads, 1 head, 2 heads or 3 heads. 

Therefore, the random variable X has as its possible values the 

numbers 0, 1, 2, 3. 

That is: 

X =0 corresponds to the event {TTT}, that is, no heads. 

X =1 corresponds to the events {TTH, THT, HTT}, that is, 
one head. 

X =2 corresponds to the events {THH, HTH, HHT}, that is, 

two heads. 

X =3 corresponds to the event {HHH}, that is, three heads. 

Once we have our sample space, we can look at the chances 

of each of the possible outcomes. In all there are 8 possible 
outcomes. 

"The chances ?f observing the event {HHH} would be é ie 
P(X=3) = 3 

To find P(X=2), we observe that the outcome ‘X = 2’ 
corresponds to {THH, HTH, HHT}. 

In this case there is a chance of 3 in 8 of observing the event 

where ‘X =2 

Continuing in this manner we have: 

P(X=0) = P({HHH}) =§ 

P(X=1) = P({TTH, THT, HTT}) =§ 
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P(X=2) = P({HHT, HTH, THH}) _3 

8 

P(X=3) = P({HHH}) 1 
8 

T STV S e e R W | 

Probability Distributions 

‘We can describe a discrete random variable by making use 

of its probability distribution. That is, by showing the values 
of the random variable and the probabilities associated with 
each of its values. 

A probability distribution can be displayed in any one of the 

following formats: 

1. Tabular form 

2 Graphical representation 

(With the probability value on the vertical axis, and the values 
of the random variable on the horizontal axis.) 

3. Function 

(A formula that can be used to determine the probability 

values.) 

  

Let the random variable X denote the number of heads 

observed in three tosses of a coin. 

T Tabular form: 

  

2. Graphical representation: 

P =) 

3 
s 11 

I 
1 I g 1 

[ 

o1 23



  

3. Function: 

plf=g) = (j)(%fx =0,1,2,3, where: 

C) G j)!x! ] 

e T T e Ny T 

Properties of the probability function 

‘We can summarise the features of any discrete probability 

function as follows: 

1. The probability for any value of X must always lie 
between 0 and 1 (inclusive). 

That is, 0SP(X'=x,)<1 for all values of x;. 

2. For the n mutually exclusive and exhaustive events, 
Ay, A4y, ..., 4, that make up the sample space ¢, then, 

the sum of the corresponding probabilities must be 1. 

That is, 
i=n 
ZP(X: x)=P(X=x)+P(X=x,)+ ... +P(X=x,) =1 
i= 

  

Where P(X = x;) is the probability of event 4; occurring. 

Any function that does not abide by these two rules cannot be 

a probability function. 

  

Because we are given that this is a probability function, then 
summing all the probabilities must give a result of 1. 

Therefore we have that: 

P(X=0)+P(X=1)+P(X=2) = | 

So+ 200+ 30 

= 600 

1 

1 

=1 <o G 

  

Using the fact that the sum of all the probabilities must be 1, 
we have: 

P(X=1)+P(X=2)+..+P(X=6) 
sk okypk ko kL k- 
123 456 

147k 
60 

_60 20 Therefore, k -0 

Now, P(3<X<5) = P(X=3)+P(X=4)+P(X=>5) 

Sk ko k 
3 45 

4%k 
60 

_ 50 However, we know that k 7 

- 47,60 _ 47 Therefore, P(3 <X <5) = 505147 " 147 

  

ai  We begin by evaluating the probability for each value 

of x: (Using the notation (*) - c.) 

a4 (2030 1 

ra=0 = 'GZ) 3 =g 
1 Qe - px=1) 
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- = o3 & 
- - o3I - 

4. (230 _ 16 
C4(§) (g) T & 

We can now set up this information in a table: 

pX=4) I 

  

                

x 0 1 2 3 4 

. 81 216 216 96 16 
PX=0 | o | & | @ | @ | s 

ii Using the table found in part i, we can construct the 
following graph: 

  

0 1 2 3 4 

i From our probability table: P(X = 2) = 2L¢ 

i The statement P(1 <X <3) requires that we find the 

probability of the random variable X taking on the 
values 1, 2 or 3. This amounts to evaluating the sum of 

the corresponding probabilities. 

Therefore:P(1 <X<3) = P(X=1)+P(X=2)+P(X=3) 

216 216 96 
s vt ot s 

Constructing Probability 

Functions 
When we are given the probability distribution, we can 

determine the probabilities of events. However, there is still 
one issue that we must deal with: 

How do we obtain the probabilities in the first place? 

Sometimes we recognise a particular problem and know of 

an existing model that can be used. However, resolving this 
question is not always an easy task, as this often requires the 
use of problem-solving skills and modelling skills as well as 
interpretive skills. 
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We start by drawing a diagram that will help us visualise the 
situation: 

S } o Staze2 
28 Select one cube , ger the first selection thie bag would 

Gontain one of the situations shown: 

os iellos 
Next, we set up the corresponding tree diagram: 

First selection Second selection 

  \; 
» = 

sz
 

a 

  

      
3 4 8 R 9% 

  

P(X=x) = - = 
  

 



  

a Let K denote the event that Kirsty is successful, so that 
P(K) = 0.8 and let B denote the event that Bridget is 

successful, so that P(B) = 0.75. 

Now, the event ‘X = 0’ translates to ‘nobody is successful’: 

Thatis, P(X = 0) = P(K' nB') = P(K')xP(B’). 

=02x0.25 = 0.05 
Similarly, the event ‘X = I’ translates to ‘only one is successful: 

Thatis, P(X=1) = P(KNB’) + P(K’ N B) 

= 0.8x025+0.2%x0.75 = 0.35 
Lastly, the event ‘X = 2’ translates to ‘both are successful’: 

That is, 

P(X=2) = P(KNB) = P(K)xP(B) = 0.8x0.75 = 0.6 

We can now construct a probability distribution for the 

random variable X: 

  

P(X=x) 0.05 0.35 0.60 
  

bi P(Both successful) = P(X = 2) = 0.60 

P(Kn{X=1}) _ P(KnB) P(K|Only one is successful) = PAX=1D)  ~ PCTD 

Exercise 5.5.1 

1 Find the value of k, so that the random variable X 
describes a probability distribution. 
  

x 1 2 3 4 5 
  

              P(X=x)| 025 | 020 | 015 k 0.10 
  

2. The discrete random variable Y has the following 
probability distribution: 
  

y 1 2 3 4 

P(Y=y) B 2B 3p 4p               

Find the value of . 

Find: i P(Y=2) i P(Y>2) 

8 

‘PROBABILITY DISTRIBUTIONS 

A delivery of six television sets contains 2 defective 
sets. A customer makes a random purchase of two sets 

from this delivery. The random variable X denotes the 

number of defective sets purchased by the customer. 

a Find the probability distribution table for X. 

b Represent this distribution as a graph. 

c Find P(X<1). 

A pair of dice is rolled. Let Y denote the sum showing 

uppermost. 

a Determine the possible values that the random 
variable Y can have. 

b Display the probability distribution of Y in 
tabular form. 

c Find P(Y = 8). 

d Sketch the probability distribution of Y. 

A fair coin is tossed 3 times. 

a Draw a tree diagram representing this 

experiment. 

b Display this information using both graphical 
and tabular representations. 

c If the random variable Y denotes the number of 

heads that appear uppermost, find P(Y>2|Y>1). 

The number of customers that enter a small 

corner newsagency between the hours of 8 p.m. 
and 9 p.m. can be modelled by a random variable 
X having a probability distribution given by 
P(X=x) = k(3x+1), wherex = 0,1,2,3,4. 

a Find the value of k. 

b Represent this distribution in: 
i tabularform i graphical form. 

c What are the chances that at least 2 people will 
enter the newsagency between 8 p.m. and 9 

p.m. on any one given day? 

The number of cars passing an intersection during 

the hours of 4 p.m. and 6 p.m. follows a probability 

distribution that is modelled by the function 

  _ D" 
1 

Pa=x = 8 e x=0,1,2,3..., 
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where the random variable X denotes the number of 

cars that pass this intersection between 4 p.m. and 6 
pm. 

a  Find: i PY=0) i P(X=1). 

b Find the probability of observing at least three 

cars passing through this intersection between 
the hours of 4 p.m. and 6 p.m. 

The number of particles emitted during a one-hour 

period is given by the random variable X, having a 

probability distribution 

; 
Px=x) =Gl v 201,23, El 
Find P(X>4). 

A random variable X has the following probability 

distribution 
  

X 0 1 2 3 

_ 1 1 1 2 
PX=x) 6 3 5 s               

a Findthe probability distributionof ¥ = X2 2. 

b Find: i P(Y=0) i P(Y<3). 

A bakery has six indistinguishable muffins on display. 

However, two of them have been filled with strawberry 

jam and the others with apricot jam. Claire, who hates 
strawberry jam, purchases two muffins at random. 

Let N denote the number of strawberry jam muffins 

Claire buys. Find the probability distribution of the 

random variable N. 

  

Mean and Variance 

Central tendency and expectation 

For a discrete random variable X with a probability 

distribution defined by P(X = x), we define the expectation 

of the random variable X as 

  

Where E(X) is read as “The expected value of X”. E(X) is 

interpreted as the mean value of X and is often written as 

1, (or simply p). Often we write the expected value of X as 

Zx.P(X = x). This is in contrast to the mode which is the most 

common value(s) and the median which is the value with 

half the probabilities below and half above the median value. 

So what exactly does E(X) measure? 

The expected value of the random variable is a measure of 
the central tendency of X. That is, it is an indication of its 
‘central position’ - based not only on the values of X, but also 
the probability weighting associated with each value of X. 
That is, it is the probability-weighted average of its possible 

values. 

To find the value of E(X) using the formula: 
i=n 

EWX) = 2 xP(X=x;) 
i=1 

we take each possible value of x;, multiply it by its associated 

probability P(X =x;) (ie. its ‘weight') and then add the 

results. The number that we obtain can be interpreted in two 

ways: 

As a probability-weighted average, it is a summary number 

that takes into account the relative probabilities of each x; 

value. 

As a long-run average, it is a measure of what one could 

expect to observe if the experiment were repeated a large 
number of times. 

For example, when tossing a fair coin a large number of 
times (say 500 times), and the random variable X denotes the 

number of tails observed, we would expect to observe 250 

tails, i.e. E(X) = 250. 

Note:  Although we would expect 250 tails after tossing 
a coin 500 times, it may be that we do not observe this 
outcome! For example, if the average number of children per 
family” in Australia is 2.4, does this mean we expect to see



  

2.4 children per family’? 

In short, we may not be able to observe the value E(X) that 

we obtain. 

  

The mode is X = 4 (the most probable) and the median 3 (half 

are above and half below 3 - this is probably best done by 

sketching the cdf of X). 

To find the mean of X we use the formula: 
i=n 

E(X) = 2 xP(X=x) 

) (2x5) () () 
4 2y 16 

10 10 

E(X)=[1x 

|+
 
3
=
 

_1, 
10 1 = 

=3 

Therefore, X has a mean value of 3. 

  

Because the die is fair we have the following probability 
distribution: 
  

                  

VARSI 

Variance 

Although we now have a means by which we can calculate 
a measure of the central tendency of a random variable, an 
equally important aspect of a random variable is its spread. 
For example, the mean of the three numbers, 100, 110 and 
120 is 110. Similarly, the mean of the three numbers 10, 100, 
and 220 is also 110. Yet clearly, the values in the second set 
of data have a wider spread than those in the first set of data. 
‘The variance (or more so, the standard deviation) provides 

a better measure of this spread. 

The variance of a discrete random variable may be considered 
as the average of the squared deviations about the mean. This 
provides a measure of the variability of the random variable 
or the probability dispersion. The variance associated with 
the random variable X is given by:    

However, for computational purposes, it is often better to use 

the alternative definition: 

The variance is also denoted by o? (read as “sigma squared”), 

ie Var(X)=0". 

‘We also have the standard deviation, given by 

Sd(X) = 6 = AVar(X), 

which also provides a measure of the spread of the distribution 
of X. 

‘What is the difference between the Var(X) and the Sd(X)? 

Because of the squared factor in the equation for Var(X) (i.e. 

Var(X) = E(X?)—p?), the units of Var(X) are not the same 

as those for X. However, because the Sd(X) is the square root 
of the Var(X), we have “adjusted” the units of Var(X) so that 

they now have the same units as the random variable X. 

The reason for using the Sd(X) rather than the Var(X) is that 

we can make clearer statistical statements about the random 

variable X (in particular, statements that relate to an overview 

of the distribution). 
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Exercise 5.5.2 

1. A discrete random variable X has a probability 

distribution given by 
  

X 1 2 3 4 5 
  

P(X=x) | 025 | 020 | 0.15 0.3 0.10                 

a Find the mean value of X. 

b Find the variance of X. 

  

2. The discrete random variable Y has the following 

  

  

              

a First we need to find £(X) and E(X2): probability distribution: 

s 1 2 3 4 

B0 = 3P =x) Pr=p | o1 | 02 | 03 | 04 
o yx2ox 3 12, 1 ——2x64+( l)><64+0><64+l><64+2><64 

=0 

E(X?)= szp(x =x) 

a Find the mean value of Y. 

b Find: i Var(Y) i8d(y). 
e x L e 12 x12 102538 4 12512 102 L (-2) ><64+(l) x64+() x64+1x64+2x64 ) ) - 1 

1 ¢ Find: i E2n) ii E[?)A 
2 

1 b Therefore, Var(X) = E(X?) -2 = %»Ol =2 3. A random variable X has the following probability 

  

  

              

2 distribution: 

X 0 1 2 

Using Sd(X) = 6 = /Var(X), we have that: PUX=x) % % é % 

a  Find: i B i E?) 
Sd(X) =0 = Ji=0.707~ 

2 iii E(Y?-2X). 

ST s I e 
b Find: i Sd(x) 

i Var(3X+1) 

_ 1 " . ¢ I Y=g find s B i EO7) 
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A delivery of six television sets contains 2 defective 

sets. A customer makes a random purchase of two sets 

from this delivery. The random variable X denotes the 

number of defective sets the customer purchased. Find 

the mean and variance of X. 

A pair of dice are rolled. Let Y denote the sum showing 
uppermost. 

a Find E(Y) . 

b Find Var(Y) . 

How many tails would you expect to observe when a 

fair coin is tossed 3 times? 

The number of customers that enter a small 
corner newsagency between the hours of 8 p.m. 

and 9 p.m. can be modelled by a random variable 

X having a probability distribution given by 

P(X=x) = k(2x+1), where x = 0,1,2,3,4. 

a Find the value of k. 

b How many customers can be expected to enter 

the newsagency between 8 p.m. and 9 p.m.? 

c Find the standard deviation of X. 

A discrete random variable Y has its probability 

distribution function defined as 
  

¥ -2 Sl 0 1 
  

P(Y=y) k 0.2 3k 0.4               

a Find k. 

b Given that the function, F, is defined by 

F(y) = P(Y<y) , find: 

i F(-1) ii F(1) . 

10. 

1l.a 

  

c Find: 

i the expected value of Y. 

i the variance of Y. 

iii the expected value of (Y+1)2. 

A dart board consisting of concentric circles of radius 
1, 2 and 3 units is placed against a wall. A player 
throws darts at the board, each dart landing at some 
random location on the board. The player will receive 
$9.00 if the smaller circle is hit, $7.00 if the middle 
annular region is hit and $4.00 if the outer annular 

region is hit. Should players miss the board altogether, 

they would lose $k each time. The probability that the 
player misses the dart board is 0.5. Find the value of k 
if the game is to be fair. 

A box contains 7 black cubes and 3 red cubes. Debra 

selects three cubes from the box without replacement. 

Let the random variable N denote the number of red 

cubes selected by Debra. 

a Find the probability distribution for N. 

b Find: i E(N) i Var(N) . 

Debra will win $2.00 for every red cube selected 

and lose $1.00 for every black cube selected. Let the 
random variable W denote Debra’s winnings. 

c If W=aN + b, find a and b. Hence, find E(W) . 

A new gambling game has been introduced in a casino: 

A player stakes $8.00 in return for the throw of two 
dice, where the player wins as many dollars as the sum 

of the two numbers showing uppermost. 

How much money can the player expect to walk away 
with? 

b At a second casino, a different gambling game 

has been set up: A player stakes $8.00 in return 

for the throw of two dice, if two sixes come up, 

the player wins $252. 

Which game would be more profitable for the 
casino in the long run? 
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12.  Given that Var(X) = 2, find: 

a Var(5X) b Var(-3X) 

c Var(l1-X). 

13.  Giventhat Var(X) = 3 and n = 2, find: Extra questions 

a  EQX-4X+5) b sa(a%xj 

  

c E(X2)+1-E(X+1)?). 

14. A store has eight toasters left in its storeroom. Three 

of the toasters are defective and should not be sold. 

A salesperson, unaware of the defective toasters, Answers 

selects two toasters for a customer. Let the random 

variable N denote the number of defective toasters the 
customer purchases. 

  

Find: 

a E(N) b Sd(N). 

15.a The random variable Y is defined by: 
  

¥ -1 1 
  

P(Y=y) P 1-p           

Find the mean and variance of Y. 

b The random variable X is defined as 
X =Y +Y,+Y;+...+Y, where each Y, 

i=1,2,3,...,n is independent and has the 

distribution defined in part a. 

Find: i EX) i Var(X) 
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The Binomial Distribution 

The Binomial Experiment 

he binomial distribution is a special type of discrete 

distribution which finds applications in many settings 

of everyday life. In this section we summarise the important 

features of this probability distribution. 

Bernoulli Trials 

Certain experiments consist 

of repeated trials where each 

trial has only two mutually 

exclusive, possible outcomes. 

Such trials are referred to 

as Bernoulli trials (after 

Jacob Bernoulli - pictured). 

The outcomes of a Bernoulli 

trial are often referred to as 

‘a success' or 'a failure’. The 

terms 'success' and ‘failure’ in 

this context do not necessarily refer to the everyday usage of 

the word success and failure. For example, a 'success' could 

very well be referring to the outcome of selecting a defective 

transistor from a large batch of transistors. 

- 

We often denote P(Success) by p and P(Failure) by g, where 

p+q=1(org=1-p). 

Properties of the binomial experiment 

1. There are a fixed number of trials. We usually say that 
there are n trials. 

2. On each one of the n trials there is only one of two 

  

possible outcomes, labelled 'success' and 'failure'. 

8 Each trial is identical and independent. 

4. On each of the trials, the probability of a success, p, 
is always the same, and the probability of a failure, 
q=1- p,is also always the same. 

The Binomial Distribution 

Ifa (discrete) random variable X has all of the above mentioned 

properties, we say that X has a binomial distribution. The 
probability distribution function is given by 

Where X denotes the number of successes in » trials such 

that the probability of a success on any one trial is p, 
O<ps<landp+q=1(org=1-p)). 

‘We can also express the binomial distribution in a compact 

form, written as X ~ B(np), read as “X is distributed 

binomially with parameters n and p”, where 7 is the 
number of trials and p = P(success) [it is also common to use 

X ~ Bin(n, p)). 

For example, the probability function for X ~ B(6,0.4) (i.e.6 

trials and p = 0.4) would be 

P(X=x) = (i)(o.‘t)"(o‘m‘”‘,x =0,1,2,..m, 
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@3 18 

  

X~B(5,0.6) means that P(X = 4) is the probability of 4 

successes in five trials, where each trial has a 0.6 chance of 

being a success, thatis, n=5,p = 0.6 and x = 4. 

LPX=4) = C,06) 04! 
5! 4 1 

= m((lé) (0.4) 

= 0.2592 

Most modern calculators can perform these calculations. TT 

NSpire calculators 

MENU / 5. Probability / 5. Distributions / D. Binomial PDF 

PDF stands for 'Probability Density function'. Make sure you 
are clear about this and CDF 'Cumulative Density function'. 

    ctions 
  

4 a 

-|9: Inverse x*... 
:|A:F Pdf... 
. |B:F Cdf... 
#|C:Inverse F... 

: 

T
v
 

v
 

  

1: Factorial () 

2: Permutations 

3: Combinations    

      
:|E: Binomial Cdf... 4: Random » 

.|F: Geometric Pdf... |5 Distributions 

G:Geometric Cdf... 

H:Poisson Pdf... 

I: Poisson Cdf...       
Example 5.6.1 is solved: 

Num Trials, n: 

Prob Success, p: 

X Value: 

  

binomPdf(5,0.6,4) 0.2592 

If using the Casio Statistics module, press F5, F5, F1 and set: 

Redforn) (dFc) 
Binomial P.D 
Data :Variable 
X 4 
Numtrial:5 
P 0.6 
Save Res:None 
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F1-CALC completes the calculation. 

Example 5.6.2 
A manufacturer finds that 30% of the items produced from 
one of the assembly lines are defective. During a floor 
inspection, the manufacturer selects 6 items from this 
assembly line. Find the probability that the manufacturer 
finds: 

a two defectives b at least two defectives. 

a Let X denote the number of defectives in the sample of 

six. Therefore, we have that n = 6, p(success) = p = 0.30 

( =g =1-p=070),s0that X~B(6,0.3). 

Note that in this case, a ‘success’ refers to a defective. 

3 
i P(x=2) = °C,03)°(0.7)" = 0.3241. 

ii P(X22) = P(X=2)+P(X=3)+...+P(X=6) 

= 60,(03)0.7)* +°¢;03 (077 + ... + *cg0.3)°0.7)] 

A second method makes use of the complementary event: 

P(X22) = 1-P(X<2) = 1-P(X<1) 

1-[P(X=1)+P(X=0)] 
1-[0.1176 + 0.3025] 

0.5798 

Note:  Using the cumulative binomial distribution on a 

calculator, we enter the range of values as 2 to 6.     

  

— 

binomPdf(6,0.3,2) 0.324135 

binomCdf(6,0.2,2,6) 0.579825 

Example 5.6.3 

Sophie has 10 pots labelled one to ten. Each pot, and its 
contents, is identical in every way. Sophie plants a seed in 
each pot such that each seed has a germinating probability 
of 0.8. 

a What is the probability that all the seeds will germinate? 

b What is the probability that only three seeds will not 
germinate? 

¢ What is the probability that more than eight seeds do 
germinate? 

d How many pots must Sophie use to be 99.99% sure that 

at least one seed germinates? 

 



  

a Let X denote the number of seeds germinating. 
Therefore we have that X ~ B(10, 0.8), 

i.e. X is binomially distributed with parameters n = 10 and p 
=0.8(andg=1-p=0.20). 

POX=10) = (:g)(o.S)”’(o,z)“ = 0.1074. 

If only three seeds will not germinate, then only seven seeds 
must germinate! 

We want, P(X=7) = (:’)(048)7(0.2)3 = 0.2013. 

Now, P(X>8) = P(X=9)+P(X=10) 

= 02684 +0.1074 

=03758 

At least one flower means, X > 1, therefore we need to find a 

value of n such that P(X>1)>0.9999 . 

PXE1)=1-P(X=0) =1~ (1(:))(0.8)0(0.2)" —1-(02)" 

Solving for n we have: 1-(0.2)" 209999 < (0.2)" <0.0001 

This inequality can be solved by trial and error, algebraically, 
or: (0.2)" £0.0001 , Sophie would need at least 6 pots, i.e. 

Expectation, Mode and Variance 

for the Binomial Distribution 

If the random variable X, is such that X ~ B(n,p), we have: 

1. the expected value of X is 1 = E(X) = np. 

2. the mode of Xis that value of x which has the largest 
probability 

3 the variance of X is 0> = Var(X) = npq = np(1 - p) 

Notes: 

1. Although we can use our earlier definitions of the 
expected value and the variance of a random variable, 

the formulae above are in a nice compact form and 

can only be used when dealing with the binomial 
distribution. 

2. The standard deviation, Sd(X), is still given by 
o=War(X)=\lnpq .   

5 
In this case we have that X~ B(G, é) , therefore ¢ = % = 

}L=E(){)=6x%=l 

o To find the mode, we need to know the probability of 
each outcome. We do this by constructing a table of 
values: 
  

x 0 1 2 3 4 5 6 
  

15625 18750 | 9375 | 2500 | 375 30 1 
P(X=x)| 26656 | 46656 | 36656 | 46636 | 26656 | 46656 | 36656                     
So that the mode of X is 1 (as it has the highest probability 

value). Notice in this case, the mode of X = expected value of 

X. Wil this always be true? 

¢ o= Jlar®X) = Jupg= ,6><%><§=0.9129. 

  

    Because we replace the marble before the next selection, 
each trial is identical and independent. Therefore, if we let X 
denote the number of blue marbles selected, we have that: 

=2 me =3 p~7,n 50 and ¢ 3 

a E(X)=np = 50x% - 1429, 

= mpg = 50x2x3 = 300, b Var(X) = npg = 0x5x5 = 750 
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This time we are given that np = 8 and npq = np(1 - p) = 4.8. 

‘Therefore, after substituting np = 8 into np(1 - p) = 4.8, we 

have that 

8(1-p) =48 s(l=p)=06=p =04 

Substituting p = 0.4 back into np = 8, we have that n = 20. 

Therefore, P(X = 3) = (23°)<0.4)3<0.5)” = 0.0123. 

Exercise 5.6.1 
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At an election 40% of the voters favoured the 

Environment Party. Eight voters were interviewed at 
random. Find the probability that: 

a exactly 4 voters favoured the Environment 

Party. 

b a majority of those interviewed favoured the 
Environment Party. 

c at most 3 of the people interviewed favoured 

the Environment Party. 

In the long run, Thomas wins 2 out of every 3 games. If 
Thomas plays 5 games, find the probability that he will 

win: 

a exactly 4 games. b at most 4 games. 

c no more than 2 games. 

d all 5 games. 

A bag consists of 6 white cubes and 10 black cubes. 
Cubes are withdrawn one at a time with replacement. 

Find the probability that after 4 draws: 

a all the cubes are black. 

b there are at least 2 white cubes. 

c there are at least 2 white cubes given that there 

was at least one white cube. 

An X-ray has a probability of 0.95 of showing a fracture 
in the leg. If 5 different X-rays are taken of a particular 
leg, find the probability that: 

a all five X-rays identify the fracture. 

   
b the fracture does not show up. 

c at least 3 X-rays show the fracture. 

d only one X-ray shows the fracture. 

A biased die, in which the probability of a 2’ turning 

up is 0.4, is rolled 8 times. 

Find the probability that: 

a a ‘2’ turns up 3 times. 

b a2’ turns up on at least 4 occasions. 

During an election campaign, 66% of a population of 

voters are in favour of a food quality control proposal. 
A sample of 7 voters was chosen at random from this 

population. 

Find the probability that: 

a there will be 4 voters that were in favour. 

b there will be at least 2 voters who were in favour. 

During an election 35% of the people in a town 

favoured the fishing restrictions at Lake Watanaki. 
Eight people were randomly selected from the town. 

Find the probability that: 

a 3 people favoured fishing restrictions. 

b at most 3 of the 8 favoured fishing restrictions. 

c there was a majority in favour of fishing 
restrictions. 

A bag containing 3 white balls and 5 black balls has 4 
balls withdrawn one at a time, in such a way that the 

first ball is replaced before the next one is drawn. Find 

the probability of: 

a selecting 3 white balls. 

b selecting at most 2 white balls. 

c selecting a white ball, two black balls and a 
white ball in that order. 

d selecting two white balls and two black balls. 

A tennis player finds that he wins 3 out of 7 games he 
plays. If he plays 7 games straight, find the probability 

that he will win:



  

10. 

12. 

a exactly 3 games. 

b at most 3 games. 

c all 7 games. 

d no more than 5 games. 

e After playing 30 games, how many of these 

would he expect to win? 

A true-false test consists of 8 questions. A student will 

sit for the test, but will only be able to guess at each 

of the answers. Find the probability that the student 
answers: 

a all 8 questions correctly. 

b 4 questions correctly. 

c at most 4 of the questions correctly. 

The following week, the same student will sit another 
true-false test, this time there will be 12 questions on 
the test, of which he knows the answer to 4. 

e What are the chances of passing this test 
(assuming that 50% is a pass)? 

The births of males and females are assumed to be 

equally likely. Find the probability that in a family of 6 
children: 

a there are exactly 3 girls. 

b there are no girls. 

c the girls are in the majority. 

d How many girls would you expect to see in a 
family of 6 children? 

During any one production cycle it is found that 12% 
of items produced by a manufacturer are defective. A 
sample of 10 items is selected at random and inspected. 
Find the probability that: 

a no defectives will be found. 

b at least two defectives will be found. 

c A batch of 1000 such items are now inspected. 

d How many of these items would you expect to 

be defective? 

14. 

15. 

Find: 

Extra questions 

Ten per cent of washers produced by a machine are 

considered to be either oversized or undersized. 

A sample of 8 washers is randomly selected for 
inspection. 

a What is the probability that there are 3 defective 

washers? 

b What is the probability that there is at least one 
defective washer? 

Over a long period of time, an archer finds that she is 

successful on 90% of her attempts. In the final round 

of a competition she has 8 attempts at a target. 

a Find the probability that she is successful on all 

8 attempts. 

b Find the probability that she is successful on at 
least 6 attempts. 

The prize that is awarded is directly proportional to 

the number of times she is successful, earning 100 
fold, in dollars, the number of times she is successful. 

c What can she expect her winnings to be after 
one round? 

She draws with another competitor. However, as there 

can be only one winner, a second challenge is put into 

place - they must participate in another 3 rounds, with 

5 attempts in each round. 

d Find the probability that she manages 3 perfect 

rounds. 

For each of the random variables: 

a X~B(7,02) 

b X-B(8,038) 

i the mean ii the mode 

iii the standard deviation 

iv P(Xz6|X>4) v P(X>4|X<6) 

   



Poisson Distribution Function 

The Poisson distribution was 

first brought to light by the 

eminent French mathematician 

Simeon Denis Poisson 

(1781-1840 - pictured) in his 

1837 work Recherches sur la 

probabilite de Judgement, where 

he included a limit theorem 

for the binomial distribution. 

At the time, this was viewed 

as little more than a welcome 

approximation for the difficult computations required when 

using the binomial distribution. However, this was the embryo 
from which grew what is now one of the most important of all 

probability models. 

However, a more general (and useful) use of the Poisson 

distribution (as opposed to only seeing it as an approximation 
to the binomial under certain conditions) is to define the 

distribution as 

the distribution of the number of ‘events’ in a ‘random 
process’. 

The key in identifying a Poisson distribution, then, is to be 

able to identify the ‘random process’ and the ‘event. As we 
shall see, the event can be distributed over time, or distance, 

or length, or area, or volume, or ... 

Examples of ‘random processes and their corresponding 

‘events’ are: 
      

Telephone calls in a fixed time|Number of wrong calls in an 
interval. hour. (Time dependent) 

  

  

Number of accidents in a day. 
Accidents in a factory. (Time dependent) 
  

Number of flaws per square 
Flawisins gliss panel. centimetre (Area dependent) 
  

Number of flaws per 5 metres. 
Flaws in a string. (Length dependent) 
  

Number of bacteria per 2 litres. 
Bacteria in milk. {Volime dependent)       
  

The above examples serve to highlight the properties 
associated with the Poisson distribution. These can be best 
summarized as: 

1 An event is as likely to occur in one given interval as it 
is in another (equally likely). 
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2. The occurrence of an event at a ‘point’ - be it a time 
interval, an area, etc. - is independent of when (or 
where) other events have occurred. 

3. Events occur uniformly, i.e. the expected number 
of events in a given time interval, or area, or, ... is 
proportional to the size of the time interval, or area, 
or, ... 

Note how similar these conditions are to those of the binomial 

distribution. However, one main difference between the two 

distributions is that there is, at least theoretically, no upper 
limit to the number of times an event may occur! 

With this in mind, we now provide a statement for the Poisson 

distribution, incorporating the distribution function. 

If X(r) is the number of events in a time interval of length 
t, corresponding to a random process, with rate A per unit 

time, then, we say that X(r)~Pn(Ar) - read as the random 
variable X has a Poisson distribution with parameter \t. 

Setting K = Ar, we define the Poisson probability 
distribution as: 

  

Note that the rate A can be specified as the number of events 
per unit time, or per unit area, or per unit of volume, or unit 

of length, etc. 

The best way to see how this works is through the following 

examples. 

  

The description of the situation fits the conditions under 
which a Poisson distribution can be assumed. From the 

information given we have that A = 0.5. 

Next we define the random variable X as the number of cars 

that pass the given point in a two-hour period. 

This means that our parameter =X x 2= 0.5x 2 =150 that 
the probability function for X is given by: 

elx 

Rg=== x! 
  =0,1,2,.. 

  

el 

X! 
  SP(X=x)= 0, 1,250 

 



  

And so, P(X=0) = 

    

s The description of the situation fits the conditions 

under which a Poisson distribution can be assumed. 

From the information given we have that A = '/ (i.e. 

one in three metres). 

Next we define the random variable X as the number of faults 
in a string 5 metres long. That is, number of faults per bobbin. 

This means that our parameter =X x 5 ='/3 x 5 = */5 so that 

the probability function for X is given by: 

-s/3(3)" 
¢ (3] P =x) = — =10, 14 Dy 

P(X=x) =   
~5/3 
fe-ora. 

  
~5/3 2 

Pur=2) = & Gj = 02623 

The Poisson PDF is found in a similar way to the Binomial 
PDF on TI calculators. 

] 
b P(X22)=1-P(X<2)=1-[P(X=0)+P(X=1)] 

  

   0.262327 H 

~5/3 0 
Now, P(X = 0) = 50—|(§) = ¢33 and 

_ ve-—5/35 |75_5/3 
Por=1) = S (3) -2 

PU22) = 1-[e3 +§e"5/3:| 

1-[1 +§]e-5’3 3 
= ge-sm I 

I 0.4963 
(T o & SR en et 1 18 3. 0 RP e ) 

  

STRIBUTIO 

Step 1:  Identify that scenario which fits the requirements of 
a Poisson distribution. 

Step 2: Determine the ‘base’ rate, \. 

Step 3: Define the random variable. 

Step4: Determine the parameter, y, that corresponds to the 
random variable in Step 3. 

  

The description of the situation fits the conditions under 
which a Poisson distribution can be assumed. From the 
information given we have that A = '/, (i.e. 1 in 12 seconds). 

Next we define the random variable X as the number of 

particles emitted in 1 minute (or 60 seconds). 

This means that our parameter pt =\ x 60 = /1, X 60 = 5 so 
that the probability function for X is given by: 

8% 
E 
  P(X=x) = X = 012500 

Therefore, 

P(X<5) = P(X=0)+P(X=1)+ ... +P(X=5) 
N L 

o 1 5! 
52 53 54 557 5 5+ 4L+ 2 

[l Tt a 120]2 
1097 s 
12 © 

06159 (=0.6160) 

e 

      

I 
I 

Mean and Variance of the 

Poisson Distribution 
With a little algebra, it can be shown that, for a random 
variable X having a Poisson distribution with parameter y, 

i.e. if X ~ Pn(p), then: 

1. EX)=p 

2 Var(X)=p 
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That is, on average there are 0.59 cars that pass over the bridge 

per day. 

In this case we are given that the average is */s. Then, if we let If this reflects a Poisson distribution, then we can use this 

the random variable N denote the number of errors per page mean as an estimate for the parameter yu in the distribution 

we have that: X~Pn(p). 

2 . _2 . _ 
E(N) = §,|4e. n= 3 With it = 0.59 we have: 

~2/379\2 ~0.59 
so.P=2) = (3] = onnar, Px=w = S0 g3, 

‘We can now produce a corresponding frequency distribution: 
  

X 0 1 2 3 4 

P(X=x) | 0.5543 | 0.3271 | 0.0965 | 0.0190 | 0.0028 
  

            

Multiplying these proportions by 100 we deduce the frequency 

  

                

distribution 

x 0 1 2 3 4 

As X~ Pn(1.5) then we have that i1 = 1.5 and 100P(X=x)| 5543 | 3271 | 9.65 | 190 | 028 
  

62 =15=0= .15 = 1.2247. 

SP(X>+6) = P(X> 1.5+ 12247) The frequencies calculated using the Poisson probability 

function follow a pattern similar to the actual frequencies. 
= P(X>2.7247 
_ P( >3 ) We can, therefore, be reasonably sure that the Poisson 
= Pxz3) distribution is an appropriate model for the number of cars 

= | =P(Xs2) that pass over this bridge. 
= 0.1912 

   
Let the random variable X denote the number of cars that a Let the random variable X denote the number of flaws 

pass over the bridge per day. per 100 cm by 150 cm metal sheet. 

‘We first determine the average number of cars that pass over ‘Then, we have that X~ Pn(L) where Il is to be determined. 

the bridge over the 100 days. 
Knowing that P(X>1) = 0.2 we have, 1 -P(X=0) = 0.2 
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SPX=0) =08t =08 

o= 02231 

i.e. average number of flaws per sheet is 0.2232. 

b P(X=1) = (0.8)(02231)! = 0.1785. 

T e I e ey e S 

Poisson as a limit of binomial 

We started this section by mentioning that the Poisson 

distribution was first encountered as a useful approximation 

for evaluating probabilities governed by the binomial 

distribution. We now summarise this relationship: 

As n— oo, Bin(n, p)~ Pn(n), where n = np . 

Obviously the larger the value of n, the better the 

approximation. However, a rough guide when considering the 
use of this approximation is # > 20 and p < 0.05. (Remember, 

this is only a guide.) 

  

Let the random variable denote the number of defectives in a 

batch of 50 components. 

Then, X ~ Bin(50,0.025) ,ie. p = 0.025 and n = 50. 

The use of the Poisson approximation in this case would be 

appropriate as n > 20 and p < 0.05. 

Now, p = np = 50x0.025 = 1.25 and so we have that 

X~Pn(1.25). 

Therefore, 

P(X23) = 1-P(X<2) 
1= [P(X=0)+P(X=1)+P(X=2)] 

  

- [6—1.25+%37I.25+ @971.25} 

1-[1+1.25+0.78125]e"1-25 

1-3.03125¢712% 
0.1315 

  

Calculators 

When working with probability distributions in this and the 
next section, you will make heavy use of your calculator. We 

provide some more examples, but there is no substitute for 

practice! 

In example 5.6.9, we are looking at the Poisson cumulative 

density function with a mean of 5. 

The question asks for P(X<5) 

Using TI: 

     
    

   
     

   
    

    

  

y ctions 

bs2: e 
\=3:[9: Inverse ... 

A:F Pdf... 

B:F Cdf... 

:|C:Inverse F... 

. |D: Binomial Pdf... 
. |E: Binomial Cdf... 

. |F: Geometric Pdf... 

G:Geometric Cdf... 
H: Poisson Pdf... 

  

T 
v 

v 

  

   

      

1: Factorial () 

2: Permutations 
3: Combinations 

4: Random » 

      

    

  
The parameters must now be entered: 

IOKI |Cancel| 

  

Pressing OK will confirm the answer we obtained earlier in 

the chapter. 

    
| poissCdf(5,0,5) 
| 

0.615961 || 
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If using Casio: 

Select the Statistics module: 

  

Select F5-DIST and scrolll right to find the Poisson 

  

  

  

  

    

          

Distribution: 

a8 Horn] (d7c)Real 
List1 | List 2 | List 3 | List 4 

SUB 

1 [ 
2 

3 

4 

POISSON] GEO JHYPRGE() (=       
Use F1 to select POISSON. 

  

  

  

  

    

        

B RadMornd) (d7c)Real 
List 1 | List 2 [ List 3 [ List 4 

SUB 
1 
2 
3 
4 

(Ped I Ped TP       

Then F2 to select the Poisson cumulative and enter the 

parameters: 

B Redornd] [d7c]Real 
Poisson C.D 

  

Data :Variable 
Lower :0 
Upper :5 
A :5 
Save Res:None 
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Finally, execute the calculation. 

B 
Poisson C. 

p=0.61 

         
D 
596065 

Exercise 5.6.2 

1L IfX~Pn(2): 

a write down the probability distribution function 

for the random variable X. 

b Find: iP(X=0). i P(X=2). 

i P(Y>1). iv PX=2X>1) 

2. The flaws in a string occur at a rate of 2 every 5 metres. 

Find the probability that a string contains 3 flaws in: 

a 2 metres of string. 

b 10 metres of string. 

3. Cars that stop at a particular petrol station during 

weekdays arrive at a rate of 10 cars every hour 

Assuming a Poisson distribution, find the probability 

that: 

a there will be one car at the petrol station during 

any 15-minute interval. 

b there will be some cars at the petrol station 
during any 15-minute interval. 

4. A switchboard receives an average of 100 calls per 

hour. Find the probability that: 

a the switchboard receives 2 calls during a one- 

minute time interval. 

b the switchboard receives at least 2 calls during a 

two-minute time interval. 

On average a typist has to correct one word in every 

800 words. Each page contains 200 words. 

a Find the probability that the typist makes more 
than one correction per page. 

b If more than one correction per page is 

required, the page needs to be retyped. What is 

the probability that more than two attempts are 

needed before a page is deemed satisfactory?



Cars have been observed to pass a given point on a 

country road at a rate of 5 cars per hour. 

a Find the probability that no cars pass this point 
in a 20-minute period. 

b Find the probability that at least 2 cars pass this 

point in a 30-minute period. 

Bolts are produced in large quantities and it is expected 
that there is a 4% rejection rate due to some form of 

defect. A batch of 40 bolts is randomly selected for 
inspection. 

Using the Poisson distribution, find the probability 
that: 

a the batch contains at least one defective. 

b the batch contains no defectives. 

Ten such batches are randomly selected. If it is found 
that at least 2 batches have at least 4 defective, the total 

output is considered for the scrap heap to be recycled. 

c Find the probability that the total output is sent 

to the scrap heap. 

Road accidents in a certain area occur at an average of 

1 every 4 days. Find the probability that during a one- 
week period there will be: 

a two accidents. 

b at least two accidents. 

Telephone calls arrive at a switchboard at a rate of 

4 every minute. Find the probability that in a two- 

minute interval there will be fewer than 6 incoming 

calls. 

Faults in glass sheets occur at a rate of 2.1 per square 

metre. If a square metre glass sheet contains at least 
3 faults it is returned to the manufacturer. 

a Find the probability that a square metre sheet is 

returned to the manufacturer. 

b Six such glass sheets are inspected. What is 

the probability that at least half of them are 

returned to the manufacturer? 

13. 

Extra questions 

Answers 

  

‘The number of faults in a glass sheet is known to have 

a Poisson distribution. It is found that 5% of sheets are 

rejected because they contain at least one flaw. 

a Find the probability that a sheet contains at 
least two flaws. 

b If the random variable X denotes the number of 
flaws per sheet, find P(X > +26). 

A shopkeeper finds that the number of orders for an 
electrical good averages 2 per week. At the start of the 

trading week, i.e. on a Monday, the shopkeeper has 5 

such items in stock. Assuming that the orders follow a 
Poisson distribution, find the probability that during a 

given 5-day week: 

a there are three orders. 

b there are more orders than he can satisfy from 
his existing stock. 

If and when his stock level is down to two items during 

the week, he orders another four items: 

€ what are the chances that he will order another 

four items? 

Faults occur randomly along the length of a yarn of 

wool where the number of faults per bobbin holding 

a fixed length of yarn may be assumed to follow a 

Poisson distribution. A bobbin is rejected if it contains 

at least one fault. It is known that in the long run 33% 
of bobbins are rejected. 

Find the probability that a rejected bobbin contains 

only one fault. 

The production manager believes that by doubling the 
length of yarn on each bobbin there will be a smaller 

rejection rate. Assuming that the manufacturing 

process has not altered, is the production manager 

correct? Provide a quantitative argument. 

 



RS 

Theory of Knowledge 

At the time of writing, we have just seen several cases in 

which political polling organisations have got the results of 

referenda and elections wrong. 

The first occurred in the UK General Election of May 2015. 
‘The result was predicted as being 'too close to call'. The actual 
result was a fairly comfortable win for the Conservative party 

led by David Cameron. 

‘The second was the so called 'Brexit' referendum. 

This was a poll to decide whether or not the UK would 

remain a member of the European Union. The polls predicted 

awin for the 'Remain’ side but the 'Leave' side won reasonably 
comfortably. 

‘The third was the US Election of November 2016. The polls 
predicted a narrow win by the Democrats led by Hillary 
Clinton. The result of the actual election was a win for the 

Republicans led by Donald Trump. 

Has anything gone wrong with polling and the statistical 
methods that underpin it? 

Note that you are being asked to consider the reliability of 
polling, not whether you like or dislike any of these three 

results! 

Some explanations are: 

1. The 'Shy Tory". Tory is another word for conservative in 
the UK. All three of these unexpected swings in voter 

sentiment were away from the ‘official line' pushed 

by governments and much of the media. Are people 
reluctant to express views that are seen as 'unpopular' 

when they are asked by a polster? Are they more likely 
to express these maverick views in a secret ballot? 

2. Confirmation bias. The detailed wording of questions 

can have a big effect on the answers. "Are you in favour 

of a military mission to rescue the impoverished 
people of Statsland?" and "Are you in favour of an 
invasion of Statsland?" are similar questions, but they 
will very likely produce quite different results. Did 

the writers of the polling questions load the questions 

(or the sampling method) to produce their favoured 

result? 

3. "Threshold issues'. The first of our examples is based 

on a UK General Election. These elections work 

using a 'first past the post' system. The winner in each 
constituency effectively gets all the votes as they are 
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elected and the other candidates are not. This works 

in favour of the large parties and against the smaller 

ones when it comes to their actual representation in 

Parliament. These two diagrams show the distribution 

of votes and the distribution of ‘seats' in the Parliament. 

Small changes in the vote can lead to big changes in 

the outcome. To what extent did this make life difficult 

for the pollsters? 

Distribution of Votes (UK 2015) 

I Conservative 

W Labour 

I ukip 

9 Liberal Dem. 

M snp 

W Other 

Distribution of Seats in Parliament (UK 2015) 

I Conservative 

M Labour 

5 ukip 

I Liberal Dem. 

W sne 

¥ Other 

  

Can you think of other factors? Remember, you are thinking 

about the polling, not the outcomes.



  

Why the Normal Distribution? 

he examples considered in previous sections mainly dealt 
with data that was discrete. Discrete data is generally 

counted and can be found exactly. Discrete data is often made 

up of whole numbers. For example, we may have counted the 

number of occupants in each of the cars passing a particular 

point over a period of two hours. In this case the data is 
made up of whole numbers. If we collect information on the 
European standard shoe sizes of a group of people, we will 

also be collecting discrete data even though some of the data 
will be fractional: shoe size nine and a half. 

Alternatively, sometimes we collect data using measurement. 

For example, we may collect the birth weights of all the babies 

delivered at a maternity hospital over a year. Because weight 

is a continuous quantity (all weights are possible, not just 

whole numbers or certain fractions), the data collected is 

continuous. This remains the case even though we usually 
round continuous data to certain values. In the case of weight, 
we may round the data to the nearest tenth of a kilogram. In 

this case, if a baby’s weight is given as 3.7 kg it means that the 

weight has been rounded to this figure and lies in the interval 
[3.65,3.75). If we are looking at data such as these weights it 

may seem as if the data is discrete even in cases when it is in 

fact continuous. 

When dealing with continuous data, we use different methods. 
The most important distinction is that we can never give the 
number of babies that weigh exactly 3.7kg as there may be 

none of these. All that we can give is the number of babies 

born that have weights in the range [3.65,3.75). 

One of the ways in which we can handle continuous data is 

to use the normal distribution. This distribution is only a 
model for real data. This means that its predictions are only 

approximate. The normal distribution generally works best 

in a situation in which the data clusters about a particular 

mean and varies from this as a result of random factors. The 
birth weights of babies cluster about a mean with variations 
from this mean resulting from a range of chance factors such 
as genetics, nutrition etc. The variation from the mean is 

measured by the standard deviation of the data. In examples 
such as this, the normal distribution is often a fairly good 

model. The basis of all normal distribution studies is the 

standard normal curve. 

The Standard Normal Curve 

The standard normal curve models data that has a mean of 
zero and a standard deviation of one. The equation of the 

standard normal curve is: 

  

The equation of this distribution is complex and does not 

directly give us any information about the distribution. The 
shape of the curve does, however, indicate the general shape 

of the distribution. 

The shape of this curve is often referred to as the ‘bell-shaped 
curve. On the next page we see how this function behaves. 

flz) 
0.4 

-3 -2 -1 1 2 3 % 
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CHAPTER 5 

As a result of the fact that the variable z is continuous, it 

is not the height of the curve but the areas underneath the 
curve that represent the proportions of the variable that lie 
between various values. The total area under the curve is 1 
(even though the curve extends to infinity in both directions 
without actually reaching the axis). 

For example, the proportion of the standard normal data that 
lies between 1 and 2 is represented by the area shown. 

  

Areas under curves are usually found using a method covered 

in Section 6.5. In the case of the normal curve, the complexity 
of the equation of the graph makes this impossible at least at 
this level. Instead, we rely on a graphics calculators. 

Using a Calculator 

The diagram shows the area that represents the proportion of 

values for which z < 2. This proportion can also be interpreted 

as the probability that a randomly chosen value of z will have 
avalue of less than 2 or p(Z < 2). 

fiz) 
0.    

       -3 -2 -1 1 2 3z 

The area to the leftis of infinite extent and yet the area is finite. 

The area is found using a calculator (much as we find the 
trigonometric ratios etc. 

The entries to solve this problem follow the same pattern used 

with the other probability distributions. If using at TI-NSpire: 

MENU / 5. Probability / 5. Distributions / 2. Normal CDF 

‘This allows the calculation of the sort of area (and hence 

probability) depicted in the diagram above. 

The dialog box allows you to fill out the range of the variable 
(~0,2] and the mean (0) and standard deviation (1). 
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B 

T+ 
. ) 

el I 

[oK] [cancel| 

0.97725 H 

      

All these examples can be solved by direct use of a calculator: 

p(Z<1)=0.8413 p(Z<0.96) (=0.8315) 

P(Z<0.03) (= 0.5120) 
Loy 

nomnCdf(-®,1,0,1) 0.841345 

rormCdf(-,0.96,0,1) 0.831472 

normCdf(-,0.03,0,1) 0511967 

  

=] 

normCdf(1.7,%,0,1) 0.044565 

normCdf(-0.88,,0,1) 0.81057 

nomCdf(-1.53,,0,1) 0.936992



RIBUTIO NormAL D 

    

It is as well when using technology to answer questions of this 
sort to have an estimate of the correct answer in mind. 

For example, part b is represented by this area: 

f2) 
0, 

  

-3 -2 -1 1 2 3 = 

The whole are under the curve is 1, the shaded area looks to 
be a bit more than half this, so an answer a bit over 0.5 is to be 
expected. This is confirmed by the calculator. 

= 
normcdf(1.7,2.5,0,1) 0.038356 

nomCaf(-1.12,067,0,1) 0617214 

normCaf(-2.45,-0.08,0,1) 0460976 

Exercise 5.7.1 

1. For the standard normal variable Z, find: 

a p(Z<0.5) b p(Z<1.84) 

c p(Z<1.62) d p(-27<2) 

e p(-1.97<2) f P(Z < -2.55) 

2 For the standard normal variable Z, find: 

a Pp(1.75 < Z < 2.65) 

b p(0.3<Z<25) 

c p(1.35<Z<1.94) 

d p(-1.92< Z<-1.38) 

e p(2.23<Z<2.92) 

The Normal Distribution 

Standardizing any normal distribution 

Very few practical applications will have data whose mean is 
0 and whose standard deviation is 1. The standard normal 
curve is, therefore, not directly usable in most cases. We 
overcome this difficulty by relating every problem to the 
standard normal curve. 

As we have already seen, a general variable, X, is related to the 
standard normal variable, Z, using the relation: 

where pi = the mean of the data and o is the standard deviation. 
We use an example to illustrate this. 

    

‘When approaching these problems, it is important to estimate 
answers. In the case of non-standard normal distributions, it 
is best to think graphically. 

This involves relating the distribution you have been given 

to the standard normal curve. The former is centred on the 
mean and spreads three standard deviations either side of 
this. 

The weight variable, X, is related to the standard normal 
variable, Z, using the relation: 

where y = the mean of the data and ¢ is the standard deviation. 

X-101 

002 

The curve centres on 1.01 kg and spreads 3x0.02 = 0.06 ether 
side of this mean (i.e 0.95 to 1.07 kg). 

In this case: Z= 
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f2) 
0.4 

    

       

Standard Normal Curve 

-3 -2 -1 1 2 3 

Non-standard Normal Curve + 
“The Sugar-Bag Curve” 

    
T 101-3x0.02 __1.013x0.02 ! 54 

0.95 1.01 107 kg 

The answers to the three parts are: 

1) 
nomCd(-,1.02,1.01,0.02) 0.841345 

nomCdf(1.02,%,1.01,0.02) 0.208528 

normCdf(1,1.05,1.01,0.02) 0.668712 

= e e O 

Rule of Thumb 

For normally distributed variables, about two thirds of the 
values lie within one standard deviation of the mean and more 

than 99% of the values lie within two standard deviations of 
the mean. 

Inverse Problems 

There are occasions when we are told the proportion of the 
data that we are to consider and asked questions about the 
data conditions that are appropriate to these proportions. 

  
This requires used of the inverse normal (option 3 on the TI) 

distribution. 
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Again, an estimate is useful. The mean is 55 and the standard 
deviation (the square root of the variance) is 4. 

Thus almost all the students can be expected to score between 

55-3x4=43 and 55+3x4=67. 

i 55-3x4 1. 55+3x4 ' X 

43 55 67  mark 

On the basis of the graph, an answer of around 50 marks 
would seem reasonable: 

(] 

invNorm(0.15,55,4) 508543 | 
  

‘Therefore a student needs to score at least 51 marks to pass 

  

Let X denote the life-time of the television tubes, so that 
X~N(8,62). 

Given that p(X<5) = 0.05= p(Z< ?] = 0.05. 

‘That is, we have that: 

p(z<-§) Z 005 -3 = -1649 
o o 

<o = 1.8238 

And so the standard deviation is approximately one year and 
10 months. 

  

Let the random variable X denote the weight of the men, so 
that X~ N(69.5, 62) .



  

We then have that p(X > 72.1) = 0.13 or p(X < 72.1) = 0.87. 9. 

a2 BL=E23 69'5) = 087 21093 _ | jpy 
c o 

.0 = 23083 

10. 

T I e W | R T 

Exercise 5.7.2 

1. If Z is a standard normal random variable, find: 

a p(Z>2) b p(Z<15) 

2: If Z is a standard normal random variable, find: 

a p(Z>-2) b p(Z<-15) 

3. If Z is a standard normal random variable, find: 

a p0<Z<1) b 

4. If Z is a standard normal random variable, find: 

Y p(-1<Z2<1) b p(-2<Z<-1) 

5. If X is a normal random variable with mean i = 8 and 

variance 6 =4, find: 

a p(X=6) b p(5<X<8) 

6. If X is a normal random variable with mean g = 100 
¥ 2 

and variance ¢~ = 25, find: 

a  p(X>106) b p(105 < X < 108) 

% If X is a normal random variable with mean u = 60 14, 

and standard deviation ¢ = 5, find: 

a p(X265) b (55 <X >65) 

8. Scores on a test are normally distributed with a mean of 15, 

68 and a standard deviation of 8. Find the probability 
that a student scored: 

a at least 75 on the test 

b at least 75 on the test given that the student 16. 
scored at least 70 

€ In a group of 50 students, how many students 
would you expect to score between 65 and 72 

on the test. 

p1<2<2) 12. 

DisTRIBUTION 

If X is a normally distributed variable with a mean of 

24 and standard deviation of 2, find: 

a p(X>28|X=26) 

b p(26 < X<28|X>27) 

The heights of men are normally distributed with a 
mean of 174 cm and a standard deviation of 6 cm. 

Find the probability that a man selected at random: 

a is at least 170 cm tall 

b is no taller than 180 cm 

c isat least 178 cm given that he is at least 174 cm. 

If X is a normal random variable with a mean of 8 and 

a standard deviation of 1, find the value of ¢, such that: 

a Pp(X>¢)=0.90 b p(X <) =0.60 

If X is a normal random variable with a mean of 50 

and a standard deviation of 5, find the value of ¢, such 

that: 

a  p(X<¢)=095 b p(X20) =095 

c pl-c<X<¢)=0.95 

The Board of Examiners has decided that 80% of all 

candidates sitting the Mathematical Methods Exam 
will obtain a pass grade. The actual examination marks 
are found to be normally distributed with a mean of 45 

and a standard deviation of 7. What is the lowest score 

a student can get on the exam to be awarded a pass 

grade? 

The weight of a population of women is found to be 
normally distributed with mean 62.5 kg. If 15% of 

the women weigh at least 72 kg, find the standard 

deviation of their weight. 

The weights of a sample of a species of small fish are 
normally distributed with a mean of 37 grams and a 

standard deviation of 3.8 grams. Find the percentage 

of fish that weigh between 34.73 and 38.93 grams. Give 
your answer to the nearest whole number. 

The weights of the bars of chocolate produced by a 

machine are normally distributed with a mean of 

232 grams and a standard deviation of 3.6 grams. Find 
the proportion of the bars that could be expected to 

weigh less than 233.91 grams. 
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17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 
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For a normal variable, X, 1= 196 and ¢ = 4.2. Find: 

a  p(X<193.68) b POX > 196.44) 

The circumferences of a sample of drive belts produced 

by a machine are normally distributed with a mean of 

292 cm and a standard deviation of 3.3 cm. Find the 

percentage of the belts that have diameters between 
291.69 cm and 293.67 cm. 

A normally distributed variable, X, has a mean of 52. 
Pp(X < 51.15) = 0.0446. Find the standard deviation of 

X. 

The lengths of the drive rods produced by a small 

engineering company are normally distributed with a 

mean of 118 cm and a standard deviation of 0.3 cm. 

Rods that have a length of more than 118.37 cm 
are rejected. Find the percentage of the rods that 

are rejected. Give your answer to the nearest whole 

number. 

After their manufacture, the engines produced for a 

make of lawn mower are filled with oil by a machine 

that delivers an average of 270 mL of oil with a standard 
deviation of 0.7 mL. 

Assuming that the amounts of oil delivered are 

normally distributed, find the percentage of the 

engines that receive more than 271.12 mL of oil. Give 
your answer to the nearest whole number. 

A sample of detergent boxes have a mean contents of 
234 grams with a standard deviation of 4.6 grams. Find 

the percentage of the boxes that could be expected to 

contain between 232.22 and 233.87 grams. Give your 

answer to the nearest whole number. 

A normally distributed variable, X, has a mean of 259. 

p(X < 261.51) = 0.9184. Find the standard deviation 
of X. 

A normally distributed variable, X, has a standard 

deviation of 3.9. Also, 71.37% of the data are larger 

than 249.8. Find the mean of X. 

The times taken by Maisie on her way to work are 
normally distributed with a mean of 26 minutes and a 

standard deviation of 2.3 minutes. Find the proportion 

of the days on which Maisie’s trip takes longer than 

28 minutes and 22 seconds. 

26. 

27. 

28. 

29. 

30. 
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Extra questions 

Answers 

In an experiment to determine the value of a physical 

constant, 100 measurements of the constant were 

made. The mean of these results was 138 and the 

standard deviation was 0.1. What is the probability 

that a final measurement of the constant will lie in the 

range 138.03 to 139.05? 

In an experiment to determine the times that 

production workers take to assemble an electronic 

testing unit, the times had a mean of 322 minutes and a 

standard deviation of 2.6 minutes. Find the proportion 

of units that will take longer than 324 minutes to 
assemble. Answer to two significant figures. 

A normally distributed variable, X, has a standard 
deviation of 2.6. p(X < 322.68) = 0.6032. Find the 

mean of X. 

The errors in an experiment to determine the 
temperature at which a chemical catalyst is at its most 
effective, were normally distributed with a mean 

of 274°C and a standard deviation of 1.2°C. If the 
experiment is repeated what is the probability that the 

result will be between 275°C and 276°C? 

Theweights ofballbearings produced by an engineering 
process have a mean of 215 g with a standard deviation 

of 0.1 g. Any bearing with a weight of 215.32 g or 

more is rejected. The bearings are shipped in crates 

of 10 000. Find the number of bearings that may be 

expected to be rejected per crate. 

If X~ N(u, 12.96) and p(85.30 < X ) = 0.6816, find 1 
to the nearest integer. 
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CHAPTER 6 

Rates of Change 

he divers in our cover picture are breathing compressed 

air. As a result, their bodies are taking up nitrogen. 

‘The rate at which the nitrogen enters and leaves their tissues 

determines whether or not they are at risk from 'the bends'. In 

this and many other applications, it is the rate at which things 

happen that matters. This is the subject of this Chapter. 

Functional dependence 

‘The notion of functional dependence of a function f(x) on 
the variable x has been dealt with in Chapter 2. However, apart 
from this algebraic representation, sometimes it is desirable 

to create a graphical representation using a qualitative rather 

than quantitative description. In doing so, there are a number 

of key words that are often used. 

Words to be kept in mind are: 

Rate of change (slow, fast, zero)  Increasing, decreasing 

Positive, negative Maximum, minimum 

Average Instantaneous 

Stationary Initial, final 

Continuous, discontinuous Range, domain 

Such terms enable us to describe many situations that are 
presented in graphical form. There is one crucial point to be 
careful of when describing the graphical representation of a 

given situation. Graphs that look identical could very well be 

describing completely different scenarios. Not only must you 

consider the behaviour (shape) of the graph itself, but also 

take into account the variables involved. 

Consider the two graphs below. Although identical in form, 

they tell two completely different stories. We describe what 

happens in the first five minutes of motion: 

Displacement ()     

        Time (mins) 
1 3 5 

An object is moving in such a way that its displacement is 

increasing at a constant rate, that is, the object maintains a 

constant velocity (or zero acceleration) for the first minute. 
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During the next two minutes the object remains stationary, 
that is, it maintains its displacement of 20 metres (meaning 
that it doesn’t move any further from its starting position). 

Finally the particle returns to the origin. 

   

    

  

elocity (nfnins) 

Time (mins) 
   1 3 5 

An object is moving at 10 m/min and keeps increasing its 

velocity at a constant rate until it reaches a velocity of 20 m/ 
min, that is, it maintains a constant acceleration for the first 

minute. During the next two minutes the object is moving at 

a constant velocity of 20 m/mins (meaning that it is moving 

further away from its starting position). Finally, the particle 

slows to rest, far from the origin. 

Although the shape of both graphs is identical, two completely 

different situations have been described! 

Quantitative aspects of change 

When dealing with the issue of rates of change, we need to 
consider two types of rates: 

1. the average rate of change and 

2. the instantaneous rate of change. 

We start by considering the first of these terms, the average, 

and then see how the second, the instantaneous rate, is related 

to the first. 

Average rate of change 

Theaverage rate of change 
can be best described as 

an ‘overview’ of the effect 
that one variable (the 

independent  variable) 
has on a second variable 

(the dependent variable). 

Consider  the graph 

opposite. 

  

We can describe the change in the y-values (relative to the 

change in the x-values) as follows: 

For x  [1,3]: 

There is a constant increase from y = 5 to y = 9 as x increases 

from 1 to 3.



  

An increase of 2 units in x has produced an increase of 4 units 

iny. 

We say that the average rate of change of y with respect to x 
is==2. 

2 

For x e [1,4]: 

This time, the overall change in y is 0. That is, although y 
increases from 5 to 9, it then decreases back to 5. So from its 
initial value of 5, because it is still at 5 as x increases from 1 
to 4, the overall change in y is 0. This time the average rate of 
change is g =0. 

For: x € [1,5]: 

As x now increases from 1 to 5 we observe that there is 
an overall decrease in the value of y, i.e. there is an overall 

decrease of 3 units (y: 559 —>5—2). 

In this instance we say that the average rate of change is 
_% = _075. 

Notice that we have included a negative sign to indicate 
that there was an overall decrease in the y-values (as x has 

increased by 4). Similarly for the rest of the graph. Note that 
we need not start at x = 1. We could just as easily have found 
the change in y for x € [3, 5]. Here, the average rate of change 

is % =-35. 

‘The question then remains, is there a simple way to find these 

average rates of change and will it work for the case where we 
have non-linear sections? As we shall see in the next sections, 
the answer is ‘yes. 

Determining the average rate of change 

To find the average rate of change in y it is necessary to have 

an initial point and an end point, as x increases from x| to x,. 

  

AtAx =x,y=y andatBx =x,y=y,. 

To obtain a numerical value, we find the gradient of the 
straight line joining these two points. 
Average rate of change from A to B = gradient from A 
toB 

_Y27N 

X3 —¥) 
    

a For this case we have the ‘starting point’ at the origin 
(with coordinates (0, 0)) and the ‘end’ point with 

coordinates (2, 1.41). 

This means that the average rate of change of y with respect to 
x, over the domain L is given by: 

Y=V _141-0 =—_———=10.705 
Xy 2-0 . 
  

b This time we will need to first determine the 
coordinates of the extreme points: 

For x = -1, y = -12x(-1)24+9 = 7.8 and for x = 2, 

y=-12x(2)2+9 = 42. 

Therefore, the average rate of change is equal to: 

Y= _ 

X=Xy 

  

It is not always necessary to have a graph in order to find the 
average rate of change. Often we are given information in the 

form of a table. 
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This time we need to consider the time interval t=0to t = 

From the table we observe that the coordinates correspondmg 
to these values are; (0,30) and (4,62). Therefore, the average 

rate of growth of the number of bacteria over the first 4 hours 
62 30 =32 & = 8. 

This means that during the first 4 hours, the number of 

bacteria was increasing (on average) at a rate of 8 every hour. 

is equal to 2=— =22 

Notice that in the Ist hour, the average rate was 
%@ = ? = 6 (< 8), whereas in the 4th hour the average 

rate of increase was 6252 _ ]1_0 =10 (>8). 

P N T e T 

Velocity as a measure of the rate of change of 
displacement 

Consider a marble that is allowed to free fall from 

aheight of 2 metres (see diagram). As the marble is 
falling, photographs are taken of its fall at regular 
intervals of 0.25 second. 

From its motion, we can tell that the rate at which 

the marble is falling is increasing (i.e. its velocity is 
increasing). 

‘What is its average velocity over the first 0.6 
second? 

Reading from the diagram, we see that the marble 
has fallen a total distance of 1.75 (approximately), 

therefore, the average velocity v, of the marble, 
given by the rate at which its displacement 
increases (or decreases), is given by 

e
—
—
—
—
—
—
—
©
—
—
—
 

€
 
©
 

Voga= !d765—__00=2})2 m/sec 

Video  discussion of average 

instantaneous rates of change. 
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a After 4 seconds of free fall, the object’s displacement 

will be 4.9(4)2 = 78.4 m. 

‘We obtained this result by substituting the value of t = 4 into 
the equation for the displacement x = 4.9/> . 

b The average velocity is given by the average rate of 
change of displacement, x m, with respect to the time 
seconds. 

Once we have the starting position and the end position we 
can determine the average velocity using: 

  

That is, the object’s average velocity over the first 4 seconds 
is 19.6 m/s. 

e Y P S T S T 

Exercise 6.1.1 

1. For each of the following graphs determine the average 
rate of change over the specified domain. 

  

a xe[4,8] b xe[-h3b] 

safY — 

| 
/| 

3bh T x 

2. For each of the following functions, find the average 
rate of change over the given domain. 

2 xexl+2-lxe(0,2] 

b xediilxe(3,8] 

¢ wmio-Lrer220 T 

d x»—»—l,xe[Ol 1.1]



  

  —1,x€ [0,100] 
   

f xx /400 —x, x € [300, 400] 

g xm2hxe[0,5] 

h xe(x-D+3),xe[-3,2] 

3 ‘The displacement of an object, t seconds into its motion, 
is given by the equation, s(1) = #+32+24,120. 

Find the average rate of change of displacement 
during: 

a the first second. 

b the first 4 seconds. 

c the interval when t = 1to t =1+ h. 

4. ‘The distance s metres that a particle has moved in ¢ 
seconds is given by the function s = 47+ 212,120 

Find the particle’s average speed over the first 4 
seconds. 

5: The distance s metres that a particle has moved in ¢ 
seconds is given by the function s = 47/+2/2,120 

Find the particle’s average speed during the time 

interval fromt=1tot=1+h. 

6. The temperature T °C of food placed inside cold 
storage is modelled by the equation: 

720 
—————, where t is measured in hours. 
12+21+25 

Find the average rate of change of the temperature, 

T°C, with respect to the time, t hours, during the first 
2 hours that the food is placed in the cold storage. 

7 The volume of water in a hemispherical bowl of radius 

ris given by: 

V= %nhl(};u h), where h is the height of the water 

surface inside the bowl. 

Extra questions 

  

RATES oF CHANGE 

Instantaneous Rate of Change 

Informal idea of limits 

As already discussed, the average rate of change between two 

points on a curve is determined by finding the gradient of 
the straight line joining these two points. However, we often 

need to find the rate of change at a particular instant, and so 
the method used for finding the average rate of change is no 

longer appropriate. However, it does provide the foundation 

that leads to obtaining the instantaneous rate of change. 

We refine our definition of the average rate of change to 
incorporate the notion of the instantaneous rate of change. 

The basic argument revolves around the notion of magnifying 
near the point where we wish to find the instantaneous rate 

of change, that is, by repeatedly ‘closing in’ on a section of 

a curve. This will give the impression that over a very small 

section, the curve can be approximated by a straight line. 
Finding the gradient of that straight line will provide us with 

a very good approximation of the rate of change of the curve 

(over the small region under investigation). To obtain the 

exact rate of change at a particular point on the curve we will 

then need to use a limiting approach. 

The process used to determine the rate of change at A is 

carried out as follows: 

Start by drawing a secant from A to B, where B is chosen to be 
close to A. This will provide a reasonable first approximation 
for the rate of change at A. Then, to obtain a better 

approximation we move point B closer to point A. 

Next, zoom-in towards point A, again. We move point B 

closer to point A, whereby a better measure for the rate of 

change at point A is now obtained. We then repeat step 2, i.e. 

move B closer to A and zoom in, move point B closer to A and 

zoom in, and so on. 

Finally, the zooming-in process has reached the stage 
whereby the secant is now virtually lying on the curve at A. In 

fact the secant is now the tangent to the curve at the point A. 

Using the process of repeatedly zooming in to converge on a 
particular region lies at the heart of the limiting process. Once 
we have understood the concepts behind the limiting process, 
we can move on to the more formal aspect of limits. However, 

apart from an informal treatment of limits, work on limits is 

beyond the scope of the core work in HL mathematics. 

We now provide a ‘visual’ representation of steps 1 to 3 

described above. 
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As we magnify, and move point B closer 
to point A, the secant from A to B 
becomes the tangent at A: 

  

    

    
By this stage the secant and the tangent are almost 
the same at point A. 
Therefore the gradient of the tangent, the secant 
and that of the curve at A are almost the same. 

vy 

  

a The average velocity over the required second (from 

t=1to t=2) is found by looking at the slope of the 

secant joining those two points on the graph of x(f). 

At t = 2, we have x(2) = 2*‘]-1(2)1 =1,and at t = 1, 

(1) = 1-Lay2 =3 ©(1) = 1-30102 = 3   

  

        

Therefore, we have that: 

o w2 =x(l) 

_1-075 
1 

=025 

Therefore, the average velocity over the second is 0.75m/s. 
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b Fort=1tot=15we have, 

_x(15) -x(1) _ (1.5-025x 1.57) ~0.75 =0.375 
ave 1.5-1 0.5 

c Similarly, for t = 1to t = 1.1, we have, 

  

d ‘We are now in a position to determine the average rate 

over the interval t=1to t=1+h. 

_x(1+m—x(1) The average velocity is given by v, %=1 

Now, x(1+h) = (1+h)—0.25(1+h)2 

1+h—025(1+2h+h?) 

0.75 +0.54 - 0.2542 
Therefore, 

_ 0.75+0.5h-025h2~0.75 _ 0.5h-0.25h> 
avé T+h-1 h 

v 

_ h(0.5-0.25h) 
- h 

=0.5-025h,h#0 

Notice that for part b, (ie. t = 1 to t = 1.5) h = 0.5, so 

that substituting & = 0.5 into this equation we have, 
Vave = 0.5-0.25(0.5) = 0.375, providing the same result 

as before. 

We can set up a table of values and from it determine what 

happens as we decrease the time difference. 

‘We notice that, as h becomes 

very small, the average rate of h ¥, 
change fromt=1tot=1+h 

becomes the instantaneous 

rate of change at t = 1! This is 
because we are zooming in onto  |0.001  0.4999 
the point where £ = 1. 

ave. 

0.1 0475 

0.01 0.4975 

This means that the rate of change at t = 1 (h ‘= 0’) would 

therefore be 0.5 m/s. This means that the particle would have 

a velocity of 0.5 m/s after 1 second of motion. 

 



  

a We first find the coordinates of the end points for the 

interval [-1,2]: 
  

x=-ly=f(-1)=.. 

  

= (-1 +2)(-1-1)(-1-4) = 10.       

x=2, y=f(2)=(2+2)2-1)2-4)=-8. 

Therefore, the average rate of change in y with respect to x 
over the interval [-1,2] is given by 

2-(-h) 3 

b To determine the rate of change at x = 4, we choose 

a second point close to x = 4. In this case, we use the 

point x = 4 + h, where h can be considered to be a very 

small number. 

We will look at what happens to the gradient of the secant 
joining the points (4,0) and (4 + h, f (4 + h)) as h approaches 

zero. 

The gradient of the secant is given by: 

S@+h) —f(4) _ f4+h)-fi4) 
4+h-4 h 

  

We now need to determine the value of /(4 + /) and f(4) . 

However, we already know that f(4) = 0. 

‘We can now find values for /(4 + /) as h approaches zero. 

For h=0.1, A4 +0.1) = f{4.1) = (41 +2)(4.1-1)(4.1-4) 
= 6.1x3.1%0.1 = 1.891 

Therefore, fl‘”"Z‘ ) :% = 1891, for h = 0.1. 

We can continue in this same manner by making the value of 

h smaller still. 

‘We do this by setting up a table of values: 

      
  

  

      

0.01 18.09010000 

0.001 18.00900100 

0.0001 18.00090001 
  

From the table, it appears that as h approaches zero, the 
gradient of the secant (which becomes the gradient of the 

tangent at (4,0)) approaches a value of 18. 

Therefore, we have that the rate of change of fat (4,0) is 18. 

More formally we write this result as, 

lim far-f4) - 18 which is read as 
h—=0 h 

“The limit as h tends to zero of fi‘irfl is equal to 
187 

  

Finding the rate of growth of the population at the start of 
2005 as opposed to finding the rate over a period of time 
means that we are finding the instantaneous rate of change. 
To do this, we proceed as in the previous example, i.e. we use 

a limiting approach. 

Consider the two points, P(5, N(5)) (start of 2005) and 

A(5+h,N(5+h)) on the curve representing the population 
size: 

A(5+h,N(5+h)) 

  

The gradient of the secant passing through P and A is given 

by: 

N(5+h) - N(5) _ N(5+h)-N(5) 

Gth-5 0 

Now, N(5) = 2.3e0.0142x5 = 2.3¢0071 
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and  N(5+h) = 23001425+ h) 

‘Therefore, the gradient of the secant is given by 
2 23 aOvOI4J5 +h) 2.3£0071 _ 230071 +0.0142h _ 5 3,007 
  

  

  

  

        

h I 

~ 2300710012 _ 

h 

Again we set up a table of values: 

0071, 0.0142%0.1 
0.1 e —1) — 0.035088 

0.071,_0.0142 % 0.01 
23¢ (e =1y o 

0.01 001 0.035066 

0.071,0.0142 % 0.001 
23e " (e -1 _ 

0.001 0.001 0.035063 

0.071,0.0142 % 0.0001 
23e (e =1 = 0.0001 0:0001 0.035063 

Usinglimimotationwehave:hlim“w = 0.035063 
- 

That is, the growth rate at the start of 2005 is 35 063 people 

per year. 

  

Exercise 6.1.2 

1 For each of the graphs shown, find the gradient of the 

secant joining the points P and Q. 

a g\ b "\ 

0@+ h A+ m2+1 

001+ h (14 1)) \ 
P(2,5) 

P(1,1) 

y s flx) 

  

% 

2 [:w—v%.x>0 

    X 

O(-1+hfi-1+h) 

  

         O +h, fi1 +h)) 

B : PELA-D) 

2 For each of the graphs in Question 1, use a limiting 

argument to deduce the instantaneous rate of change 
of the given function at the point P. 
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3. For each of the functions, f, given below, find the 
gradient of the secant joining the points P(a, f(a)) 

and O(a+h,fla+h)) . 

  

a fix) = 3+x2 b fix) = 1-x2 

¢ f)=@+?-2d flx) = ¥ +x 

e f)=2-%3 f fix) = x3=x2 

g =12 b W)= 

i fix) = ox 

4. An object moves along a straight line. Its position, 
x metres (from a fixed point O), at time ¢ seconds is 

givenby x(1) = 2231+ 1,t20. 

a Sketch the graph of its displacement function. 

b Determine : 

i its average velocity over the interval from ¢ = 1 
tot=2 

ii its average velocity over the interval t=1to t = 
L5 

i its average velocity over the interval t=1to t = 
L1 

c Show that its average velocity over the interval 

t=1tot=1+h, where his small, is given by 
1+2h. 

d How can the last result help us determine the 
object's velocity at t = 12 

e Show that its average velocity over any time 

interval of length h is given by 4/+2h-3. 

Hence deduce the object’s velocity at any time 
t during its motion 

Extra questions 

Answers (includes Ex 6.1.3)  



  

The Derivative and the Gradient 

Function 
In the previous section we concentrated on determining 
the average rate of change for a function over some fixed 
interval. We then proceeded to find the instantaneous rate of 
change at a particular point (on the curve). We now consider 

the same process, with the exception that we will discuss 

the instantaneous rate at any point P(x,f(x)). The result 

will be an expression that will enable us to determine the 
instantaneous rate of change of the function at any point on 
the curve. Because the instantaneous rate of change at a point 

on a curve is a measure of the gradient of the curve at that 

point, our newly found result will be known as the gradient 

function (otherwise known as the derivative of the function). 

For a continuous function, » = f(x) , we deduced that the 

instantaneous rate of change at the point P(a,f(a)) is given 
by: 

Sla+h)-f(a) 
” 

where h is taken to be very small (in fact we say that h 
approaches or tends to zero). 

     Pla.fla)) 

At the point P, the tangent and the line are one and the 
same. 
Therefore, finding the gradient of the tangent at P is the 
same as finding the rate of change of the function at P. 

So, to determine the rate at which a graph changes at a single 
point, we need to find the slope of the tangent line at that 

point. 

This becomes obvious if we look back at our ‘zooming in 
process—where the tangent line to the function at the point 

P(a.f(a)) is the line that best approximates the graph at that 
point. 

Rather than considering a fixed point P(a,f(a)), we now 

consider any point P(x,f(x)) on the curve with equation 

=) 

   

      

   

  

Ox+h.flx+h)) 

| 

/1\*'/1?*/”) 

The rate of change of the function fat P(x, f(x)) is therefore 

given by the gradient of the tangent to the curve at P. 

If point Q comes as close as possible to the point P, so that i 

approaches zero, then, the gradient of the tangent at Pis given 
by the gradient of the secant joining the points P(x, f{x)) 
and Q(x+h, flx+h)) ash>0. 

In mathematical notation we have: 

Notation and language 

We now introduce the term derivative of a function: 

The rate of change of f(x) at P(x, f(x)) 

= Gradient function of f(x) at P(x, f(x)) 

= The derivative of f(x) 

= lim [ /) 
h—0 h 

The derivative of a function f(x) is denoted by f'(x) and is 
read as “f dash of x”. 

oy fim S —fx) 
S =0 

That is, finding the derivative of a function using this 
approach is referred to as finding the derivative of f from first 
principles. 

It is important to realise that in finding f'(x) we have a 
new function - called the gradient function, because the 

expression f'(x) will give the gradient anywhere on the curve 

of f(x). If we want the gradient of the function f{x) at x = 5, we 
first determine f'(x) and then substitute the value of x = 5 into 

the equation of f'(x). 
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a Find the distance fallen during the first second. 

b Find the distance fallen between t=1and t=h 
+ 1 seconds. 

© Hence, find the speed of the object 1 second 
after it is released. 

  

Using the first principles method means that we must make 

use of the expression 3. Find, from first principles, the gradient function, f'(x), 
of the following. @ = lim A AR 0 g, 

h=0 h = 
a fix wax? b fix w5x2 

We start by first evaluating the expression f(x + /) —f(x) : 
c fix mdx3 d fix w5x3 

That is: flx +h) —f(x)= 3(x+h)*+4-[3x>+4] 
= 3(x2+2xh+h?)+4-3x2 -4 e fix ot f fix w5x4 

= 3x2+ 6xh+3h2-3x2 
= 6xh 302 Can you see a pattern in your results? 

Substituting this result into (1): 4. Find, from first principles, the derivatives of the 

lim LM =) _ 6xh +3h? following functions. 

h=0 h h-0 h 
i (63 30) a  fixy=23-5 b gx) = 2-x 

h-0 h . 1 

= lim (6x+3h),h#0 e R =2-ztdt o fo =< 
=0 2 

= 6x e =5 f Sy = 
‘That is, we now have the gradient function f'(x) = 6x. 

5 A particle moving along a straight line has its 
To determine the gradient of the function at x = 3, we need to position at time t seconds governed by the equation 

substitute the value x = 3 into the gradient function. That is, x(f) = 26— 052,120, where x(1) is its position in 
f'(3) = 6x3 = 18. metres from the origin O. 

s e ] a Find the particle’s velocity after it has been in 
motion for 1 second. 

Exercise 6.1.3 
b Find the particlé’s velocity at time t = a, a > 0. 

1. Use a limiting process to find the gradients of these 

curves at the points indicated: 6. A particle moving along a straight line has its 
position at time t seconds governed by the equation 

a xpxdaty = 1 x(1) = 42-£3,120, where x(r) is its position in 
metres from the origin O. 

b v=2>2-latr=2 
a Sketch the displacement-time graph of the 

  

c flix)= ch atx =3 motion over the first five seconds 

d xp2¥atx=1 b Find the particle’s velocity at time: 

e f=e-2+3 att=05 i =1 ii t=2 

f t »—)'Z att=4 c Find the particle’s velocity at any time t, £ > 0. 

2. Anobjectisdropped fromahighbuilding. Thedistance, d ‘When will the particle first come to rest? 
d metres, that the object has fallen, t seconds after it is 
released, is given by the formula d = 4.92,0</<3. 
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Differential Calculus 

Power rule for differentiation 

inding the derivative from first principles can be tedious. 

The previous two examples clearly show this. However, 

using the first principles approach produces the results shown 
in the table below: 
  

     ¥ =fx) S 
  

4 |3 2! | 1 P ax                 Derivative % - f(x) 
dx 
  

Based on these results and following the general pattern, it is 

reasonable to assume the general result that if: 

In fact this rule is true for any exponent n € R, i.. for any 

real number 7. 

For example, if we look at the square root function, then we 
have that y = /x = x1/2. So in this case we have that n = 4. 

Then, using our rule we have: 

   
This result is known as the power rule for differentiation. 

Notice that for the case n = 0, then y = x¥ and so we have 

that & = x0-1 = ¢. 
dx '       

Before we differentiate these functions, each function must 

be rewritten in the form x” before we can use the power rule. 

a Let flx) =x* = f’ (x) = 6x*~' = 6x° 

b Lety = 1 . 

   

Remember, we first need to rewrite it in the form x”: 

    

Function — Step 1 — Step 2 

Rewrite: Use power rule: 

= 12 dy _ y = x-12 dy _ 
. dx 

Step 3 
Simplify: 

  

c Lety=3A/:r. 

As in the previous example, we rewrite this function in the 
form x" so that we can use the power rule: 

Function —» Stepl 5 Step2 ___, Step3 
Rewrite: Use power rule: Simplify: 

1 i 1 i 
=3[ _ 3 dy _ 13 dy 

y = X y=x - 

. . dx 3 dx 
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d Let f(x) = fi so that f (x) = x* 

s f (%) =-2x" = =2x%, that s, f (x) = -% . 

Derivative of a sum or difference 

This rule states that the derivative of a sum (or a difference) is 

equal to the sum (or the difference) of the derivatives. 

Tha‘ is, _ 

    

d) d = 233 i @Y = 8 (oy3 4 55— y=2x3+5x-9= x X(Zx 5x-9) 

4 
dx 

6x2+5 

d d @+ (50~ £9) 

Notice we have used a slightly different notation, namely that: 

d 
We can think of o the differentiation operator, so that 

d e ; ; - 
dx(f(x)) or dx(y) is an operation of differentiation done on 

flx) or yrespectively. 

b A0 = e axore = 
X 

a 

d 5 

(A-5+4) 
~—dan_ 53 dx(x 5x72 +x) 

“ Ll sk 

15y 
2.4 

A 1734 504 _d sy, dosiay_d SO A )= e )+ M) ) 

= Loy Ln 3 T 2x2x 

Exercise 6.2.1 

1 Find the derivative of each of the following. 

a % b 2 & & 

d 9l e 47 f ® 

g x2+8 h Sx4+2x—1 

i -aSHedox 2044+ 10x 

k3 -6x2+8 1 3x—-1+x?1+x4 

2 Find the derivative of each of the following. 

fib:\/;cfi 

woe MR op 6l 

2h-3+12 h x 

532 - ox j 

8J§+3x‘5+%‘ 1 

  

3. Find the derivative of each of the following. 

a 

  

Sr(x+2) b (x+ 13 -1) 

2x— 
x2+1-Lx20 a 2 x#0 X x 

2 
“fi‘f’z,po £ St 

X 

3x2- 7.3 (WZ)Z #0 T,xto h 5% 

1) 5 -2 s L) x=0 x x> 
("+x2) ¥ 3k 
-3Pxz0 1 (l—fi)3,x>o 

4 aShowthatif fix) = ¥2—x, then /(x) = 1 +Z@4 

b Show that if fix) = J2x —24/x,x>0, 

then 2xf'(x) = 1-4/2,x>0 

Show that if y = ax" where a is real and 

ne N then @ =T v 
dx  x 

  

Show thatif y =    vy - X,x>0, thendx+zx 0.



DIFFERENTIATION 

  

Differentiating with variables other than xand y 

Although it was convenient to establish the underlying theory 
of differentiation based on the use of the variables x and y, it 
must be pointed out that not all expressions are written in 
terms of x and y. In fact, many of the formulae that we use are 
written in terms of variables ogler than y and x, e.g. volume, 

V, of a sphere is given by ¥ = 7%, where r is its radius. The 
displacement of a particle moving with constant acceleration 
is given by s = ut+5ar>. However, it is reassuring to know 
that the rules are the same regardless of the variables involved. 

‘Thus, if we have that y is a function of x, we can differentiate 

y with respect to (w.r.t.) x to find ‘—if . 

On the other hand, if we have that y js a function of t, we 
would differentiate y w..t. t and write % . Similarly, if W was 
%Wnction of 6, we would differentiate W w.r.t. 8 and write 

R 

  

a As Vis a function of r, we need to differentiate V with 

respect to r: 

S NN S T ) Vv 3nr = = 31[(3r ) = 4nre. 

b This time p is a function of w, and so we would 
differentiate p with respect to w: 

p= 3w3~2w+20:j—£ = 9w2-2, 

c In this expression we have that s is a function of t and 
so we differentiate s w.r.t : 

s = 10r+42 =% = 1048 
dt 

Exercise 6.2.2 

1. Differentiate the following functions with respect to 
the appropriate variable. 

a s=1204- b 

¢ P=Jrr+¥r-2) d 

e A=40L-13 f 

  

g V=2B+51 h 

Extra questions 

  

Derivatives of 

Transcendental Functions 

A transcendental function is a function that cannot be 
constructed in a finite number of steps from elementary 

functions and their inverses. Some examples of these 

functions are sinx, cosx, tanx, the exponential function, e*, 

and the logarithmic function log v (or Inx). 

Also in this section we look at derivatives of expressions 

that involve the product of two functions, the quotient of 

two functions and the composite of two functions. Each of 

these types of expressions will lead to some standard rules of 
differentiation. 

Derivative of circular trigonometric functions 

‘We begin by considering the trigonometric functions, i.e. the 
sine, cosine and tangent functions. 

‘There are a number of approaches that can be taken to achieve 
our goal. In this instance we will use two different approaches 
to find the derivative of the function xwsin(x). 

Letting f{x) = sin(x) and using the definition from first 
principles we have: 

£ = tim D) 
h—0 h 

~ lim sin(x + A) — sin(x) 

h—0 h 
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CHAPTER 6 

From the identities discussed in Section 3.3: 

sin(x+/4)—sin(x) _ sin(r)cos(/)+cos(x)sin(/)—sin(x) 

/ B " 
  

‘We are taking the limit as h becomes small. 

/1= 0,cos(/%)—1 so: 

S(x)= 
lim (sm(x)xlfi»cos(x)sin(/t)f sin(x)] 
h—0 n 

_ /’lijo (cos(xlsin(}t)] 

The result of this limit is not immediately obvious. 

It simplifes to: /()= ligs (M)XCOS(X) 
h—=0 h 

This depends on the result of the limit: lim  ( sin(/) 
h—0 h 

‘The result of this is suggested (not proved) by the unit circle. 

  

From the definition of angle, the arc length (green) is equal to 

the angle in radians, 6. The light green line is equal to sin 6. 

The smaller the angle becomes, the closer these to quantities 
become to one another. 

sin(/4) 

h 

This is only true if the angle is measured in radians - a very 
good reason for using radians rather than degrees! 

  lim i g =1 : This strongly suggests that: Fos0 ( ) and hence: 

Similarly, using either approaches, we have: 
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Derivative of the exponential function 

Consider the exponential function x~e*. Although we 
could apply the same graphical method which was used to 

determine the derivative of the sine function, this time we 

shall make use of the definition of the derivative, i.e. 

S = tim R 1) 
h—0 

x+h x 
e = lim € 

h—0 h 

  

h o x 
ee —e : x h x+th 

usinge e = ¢ 

  

x . (e" —1) Useanumerical method 

h—0 h to find that this limit = 1 

I ® §   

x 
=e x1 

=e 

Notice that this function has a derivative that is the same as 

itself. 

Derivative of the natural log function 

Consider the function x~log x. As in the previous case, we 
use the definition of the derivative to establish the gradient 

function of x-log x. 

£i6 = Tlim SEEDSE) 
h=0 h 

log (H—h) 
A x (Using the log laws) 

log,(x + h) ~ log (x) 

tho h 

= lim 
h=0 

The next step is a little tricky, so we write it down first and 

then see how we arrive at the result. 
x 
i 

-l lim logz(l +I-7) 
Xh—0 x. 

To get to this slep we proceed as follows: 

log (I [ogL(l += ) 

— + (ies1+2) 
x 

Ry 
g Iogg[] + }) 

=
 

Then, as the argument in the limit is / (i.e. it is independent 

of x) we have: 
x x 

hY! ( h) = +4) = 2 lim 1 hm - log [l I] 2 l| Oog 
h—0x



  

Then, as the log function is a continuous function, we have 
that the limit of the log is the same as the log of the limit so 

that 
x X 

imjos {1+ = g m 1+ 1+=] =l 1 1+= 
h]:n OIOgE( x) % e{h T x 

x 
i 

However, we also have that hlimo(l + fl) = e and so we end 
- X 

up with the result that 

x 
) h; ! 1 1 2 +4) = 2 =2xl =1 x,,"“‘ol°ge(’ x) o og ¢ x><1 Z 

Derivative of a Product of 

Functions 
Many functions can be written as the product of two (or more) 

functions. Forexample, thefunctiony = (x3 - 2x)(x? +x-3) 

is made up of the product of two simpler functions of x. 
In fact, expressions such as these take on the general form 
y =wuxvor y=flx)xg(x) where (in this case) we have 

u=flx) = (x3-2x) and v = g(x) = (2 +x-3). 

To differentiate such expressions we use the product rule, 
which can be written as: 

  

          

  

  

  
a A useful method to find the derivative of a product 

makes use of the following table: 

  

DIFFERENTIATIO 

  

  

2xsin(x) + x2cos (x) 

Let y = x?sin(x) sothatu = x> and v = sin(x). 

A g So that e 2x and = cos(x). 

Xyt uX— Using the product rule we have = Z dy _ du dv 
dx 

= 2xx sin(x) + x2 x cos(x) 

= 2xsin(x) +x2cos(x) 

b Let 

y = (x¥-2x+1)e¥sothat u = (x*~2x+1)and v = e*. 

du _ 30 v _ Then,dx 3x zmddx e 

Using the product rule: 

& du @ o= EmXvruxg 

= (3x2-2)x e+ (3 -2x+ 1) xe* 

= (3x2-2+x3-2x+1)e* 

= (3 +3x2-2x—1)e* 

c This time set up a table: 

Lety = )lrloggwi'hu = chandv = log,x. 
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HAPTER 6 

Derivative of a Quotient of 

Functions 
In the same way as we have a rule for the product of functions, 
we also have a rule for the quotient of functions. 

g 
For example, the function y = —   

¥ax-1 

is made up of two simpler functions of x. Expressions like this 

take on the general form 

=4 g y=d0) 
T 2@ 

For the example shown above, we have that 

u=x2and v =2x3+x-1. 

As for the product rule, we state the result. 

To differentiate such expressions we use the quotient rule, 
which can be written as: 

  

        

a We express in the form V' = 7, so that: 
sn() 

u=x2+1andv = sin(x)- 

d 
Giving the following derivatives, Z—l; = 2x and d_;‘: = cos(x) 

Using the quotient rule we have, 

iy 
dy _ dx dx 
dx E 

_ 2xxsin(x) — (x> + 1) X cos(x) 

[sin(x)1 
_ 2xsin(x) - (2 + 1)cos (x) 

sin?(x) 

   
  . e+x . _u 

b First express T the form y = = 

Sothatu =e'+txandv = x+1 and 

= d_" = 
Ir errland " Using the quotient rule, we have 

du dv 
dy _dx T (@ )Xt (e ) x ] 
dx V2 (x+1)? 

= Xef+eftxtl —ef—x 

(x+1)? 

- X&+1 

(x+1)? 

c Express the quotient LX()X) in the form y = 5 > 

so that u = sin(x) and v = 1 —cos(x). 

du _ dv _ 
Thena cos(x) and % sin(x) . 

Using the quotient rule, we have 

d—u Xv—uX=- dy 
dy_dx dx _ cos(x) X (1 = cos(x))-sin(x) X sin(x) 

dx v? (1= cos(x))? 

_ cos(x) —cos2(x) — sin?(x) 

(1~ cos(x))? 

_ ©c0s(x) —(cos?(x) +sin?(x) 

(1—cos(x))? 

_ _cos(x)—1 

(1-cos(x))? 
_ (1 —cos(x)) 

(1-cos(x))? 

1 
T(T—cos(x)) 

The Chain Rule 

To find the derivative of x*+ 1 we let ¥ = x*+1 5o that 
.o 442, 

dx 3 

Next consider the derivative of the function y = (x3+ 1)2 

We first expand the brackets, y = x®+2x3+ 1, and obtain 
&= on. 
x 

This expression can be simplified (i.e. factorised), giving: 

D — g2y 
dx .



  

In fact, it isn’t too great a task to differentiate the function 
y=(3+1)3, 

As before, we expand y = x?+3x0+3x3 + 1 

dy AL = ox8 4 18x5 +9x2 so that 7= . 

Factorizing this expression we now have: 

A= 92364203+ 1) = Ox2(x3+ 1)2. 
dx 

But what happens if we need to differentiate the expression 

» = (x*+1)%2 We could expand and obtain a polynomial 
with 9 terms (!), which we then proceed to differentiate and 

obtain a polynomial with 8 terms ... and of course, we can 

then factorise that polynomial. The question arises, “Ts there 

an easier way to do this?” 

We can obtain some idea of how to do this by summarizing 
the results found so far: 

y=ax3+1 %:3# 3x2 
  

2x3x2(x3+1) y = (3+1)? % = 6x5 +6x2 
  

=iy % = 08+ 185+ 9x2 |3x3x2(x3 4+ 1)2         
  

Continuing y = (x*+1)%, 

B = 201143628 4 365+ 1267 or 4X 3203 412 

The pattern that is emerging is that if: 

y=3+1) (hen% = nx3x2(3+ 1)L 

In fact, if we consider the term inside the brackets as one 

function, so that the expression is actually a composition of 
two functions, namely that of x* + 1 and the power function, 

we can write u = x3+1and y = u". 

Y =1 = pd+1)n-1 du _ 30 So that T n(x3+1) and - 3x2, giving 

&y _dy, di the result ol 

Is this a ‘one-off’ result, or can we determine a general result 
that will always work? 

To explore this we use a graphical approach to see why it may 

be possible to obtain a general result. 

u = fix) 

  

We start by using the above example and then move onto a 
more general case. For the function » = (x*+1)?, we let 
u=x3+1(= gx) andsoy = u (= fig(x))) . We need to 
find what effect a small change in x will have on the function 
y (via u), i.e. what effect will 8x have on y 2 

We have a sort of chain reaction, that is, a small change in 

x, 8x, will produce a change in u, 8u, which in turn will 
produce a change in y, 8y! It is the path from 8x to 8y that 
we are interested in. 

This can be seen when we produce a graphical representation 

of the discussion so far. 

We start by looking at the effect 
that a change in x has on : 

Then we observe the effect 
that the change in u has on y: 

2 

  

We then have §x = 1.1 - 1 =0.1 and 8u = 2.331 -2 =0.331 

Similarly, 5u = 2.331 - 2 = 0.331 and 8y = 5433561 - 4 = 
1.433561 

Based on these results, the following relationship can be seen 

The basic outline in proving this result is shown in the 
following argument: 

Let 8xbe a small increment in the variable x and let 3u be the 

corresponding increment in the variable u. This change in u 

will in turn produce a corresponding change 8y in y. 

As 8x tends to zero, so does du. We will assume that u # 0 
when 8x#0. 

Hencewehavethata—y o 
L &y _ . By du 

v ou br = lim = lim = 
5x—>00x  dr—0du Ox 
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- (alh-"» ogzu) ) (5?3 0%) Given that: 

P ) . du (&) () (SulT» odu) \ox 3 08x) ¥ —0=8u—0 

& _dv du 
dx  du dx 

We then have the result: - 

Using the chain rule 

We will work our way through an example, showing the 

critical steps involved when using the chain rule. 

This is highlighted by finding the derivative of the function 
y = sin(x2). 

_ Recognition 

This is the most important step when deciding if using the 
chain rule is appropriate. In this case we recognise that the 
function y = sin(x?) is a composite of the sine and the 

squared functions. 

_ Define u (or g(x)) 

Let the ‘inside’ function be w. In this case, 
we have that « = x? 

_Differentiate u (with respect to x) 

au _ 5 
dx % 

Express y in terms of u     

  

y = sin(u) 

   

  

Differentiate y (with respect to ) 

    % = cos(u) 

- Use the chain rule 

L - 3—1’:-% = cos(u) x 2x = 2xcos(x?) 
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a Begin by letting « = x + cos(x) = % = 1-sin(x). 

Express y in terms of u, that is, 

= % o 1(= ‘_) 
y k)g"":du u\ x+cos(x)/" 

Using the chain rule we have: 

S _ 1-sin(x) Wi, L 
dx x+cos(x) dx u x+ cos(x)- 

(1—sin(x)) 

b This time we let g(x) = 1-3x2, 5o that g'(x) = —6x. 

Now let f(x) = (hog)(x) so that A(g(x)) = (g(x))* and 

H(g(x) = 4(g(x))3- 

Therefore, using the chain rule we have 

J(x) = (hog)'(x) = h'(g(x)) - g'(x) 

= 4(g(x))3 x (~6x) 
= -24x(1-3x2)3 

T D T S DI PR | 

Some standard derivatives 

Often we wish to differentiate expressions of the form 
y = sin(2x)ory = €3 or other such functions, where 

the x term only differs by a constant factor from that of 
the basic function. That is, the only difference between 
y = sin(2x) and y = sin(x) is the factor ‘2. We can use the 

chain rule to differentiate such expressions: 

Let u = 2x, giving y = sin () and so 

% = %Z—: = cos(u) X2 = 2cos(2x) 

Similarly, 

Let u = 5x, giving y = e* and so 

% = %% =elx5 = 5e5% 

Because of the nature of such derivatives, functions such as 
these form part of a set of functions that can be considered 
as having derivatives that are often referred to as standard 
derivatives. Although we could make use of the chain rule 
to differentiate these functions, they should be viewed as 
standard derivatives. 

‘These standard derivatives are shown in the table (where k is 

some real constant):



DIFFERENTIATION 

    

  

  

  

  

sin(kx) kcos(kx) 

cos (kx) —ksin(kx) 

tan (kx) Jsec?(kx) 

ekr kekx 

log (kx) 1 
x         

Notice, the only derivative that does not involve the constant 
k is that of the logarithmic function. This is because letting u 
= kx, we have v = log(u) so: 

dy _dy du _ 1 
dx du dx u 

When should the chain rule be used? 

A good first rule to follow is: If the expression is made up of 
a pair of brackets and a power, then the chances are that you 
will need to use the chain rule. 

As a start, the expressions in the list of results that follows 
would require the use of the chain rule. Notice then that in 
each case the expression can be (or already is) written in 

‘power form’. That is, of the form y = [f{x)]". 

Some examples to be on the lookout for: 

»=(2x+6)5 -Letu = 2x+6andy = u° 
1 

y=A@3+1) - Letu=2x3+1Tandy = u? 

y -Letu =x-1landy = 3u? 

3 

3 
= —(x— l)z,x:: 1 

1 
Y= r——-letu=e*tefandy =u 3o+ ox Y 

‘We now look at some of the more demanding derivatives 
which combine at least two rules of differentiation, for 
example, the need to use both the quotient rule and the chain 
rule, or the product rule and the chain rule. 

  
2 Lety = (1 +sinZy) = (1 +sin2v) /%, 

Using the chain rule we have 

dy _ 1,4 in2 in2o)-1/2 D= D 1+ sin?) (1 + sin?) 

1 

(1 +sin?x) 
X (2sinxcosx) X 

I
—
 

_ _sinxcosx 

A1+ sin?x) 

b Lety = eVsin(1-2x). 

Using the product rule first, we have 

D~ o)y int -2+ e x L sing 1 - + dx(e")xsm(l 2x) +e* de(sm(l 2x)) 

3x2e¥ sin(1—2x) + e¥’ x~2cos(1 - 2x) 

= ¢’(3x2sin(1 — 2x) - 2cos (1 - 2x)) 
c Let: (Quotient rule) 

%(x) xR+ 1 —xxad;(sz ) 

(WrZ+1)? 
1 

1X«/x2+l—xx%x2xx(xz+l) 2 

241 

NX2+] - : 
_ Ax2+1 

(2+1) 

W2 a2 
A2+ 

) 
1 

2+ 1)Ax2+1 

(I e Tl Y T S e P BT 

X 

Nx2+1 
  fx) = =/ = 

    

a y= ln(}%l) = In(x)-In(x+1) 

= EFD-% _ 1 

TRGED) AGED 
- 

“dx x(x+1) 
- 
X4 1 =

=
 

Notice that using the log laws to first simplify this expression 
made the differentiation process much easier. 
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HAPTER 6 

‘The other approach, i.e. letting u = —i—l, v = In(x) and 
x 

then using the chain rule would have meant more work — as 
not only would we need to use the chain rule but also the 
quotient rule to determine :—” 

Ix 

b Let u = Int sothat y = sinu. 

Using the chain rule we have: 

dy _dy du _ 1 _ cos(ing 
d " dn @ Xy =T 

c Here we havea product x x In(x?), so that the product 
rule needs to be used and then we need the chain rule 
to differentiate In(x2). 

In this case we cannot simply rewrite In(x2) as 2In(x). Why? 

Because the functions In(x2) and 2In(x) may have different 

domains. That is, the domain of In(x2) is all real values 

excluding zero (assuming an implied domain) whereas 
the domain of 2In(x) is only the positive real numbers. 
However, if it had been specified that x > 0, then we could 

have ‘converted’ In(x2) to 2In(x). 

dy _ dy_d 2 4 n(x2y) = 2 2 %= XD X () = 1XInG) +xx 

= In(x2)+2 

== =~ e e saeas | 

Derivative of reciprocal circular functions 

Dealing with the functions sec(x), cot(x) and cosec(x) is 

achieved by rewriting them as their reciprocals: 

sec(x) = #(x)’ cot(x) = tanl(x) L 
sin(x) - 

  cosec(x) = 

Once this is done, make use of the chain rule. 

4 = ALY o i 
Eg dx(cosecx) dx(sinx) dx[(smx) I 

cosx = 1 x cosx X (sinx)2 = — 
(sinx)? 

We could leave the answer as is or simplify it as follows: 

cosx 
sinxsinx 

= —cotxcosecx . 

Rather than providing a table of ‘standard results’ for the 
derivative of the reciprocal circular trigonometric functions, 
we consider them as special cases of the circular trigonometric 
functions. 
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a Ax) = cot2x = T = (tan2x)~! 

~f'(x) = —1 x 2sec?2x x (tan2x)2 

_ _ 2sec?2x 
tan®2x 

- ox 1 1 
    x 

cos?2x  tan?2x 
2: 1 oS08 2x   

  

  

= =2X 
cos?2x " sin?2x 

= — 2cosec?2x 

b = secly = ! = (cosx)2 
v (cosx)? 

B inex (cosx) = 2sinx 
dx (cosx)? 

sinx 1 =2x Ay 
€osx " (cosx)? 

= 2tanxsecx 

In(cosecx) _ In[(sinx)~'] _ In(sinx 
# x x 

%)xx— 1 x In(sinx) 

o b 
I 

    

  

*2 

xcosx — sinxIn(sinx 

inx 
2 

  

_ xcosx — sinxIn(sinx) 

x2sinx 

An interesting result 

A special case of the chain rule involves the case y = x. 

By viewing this as an application of the chain rule: 

dy _ dv di 
& = 55 wehave (after setting y = x): 

Cdy du_ o dx duyo dx o du 
du'dx " du dx



LIl 

  

d 5sin(5x) + 3e2¥ 

This important result is often written in the form: 
e tan(4x) + e2* 

6. Differentiate the following. 

‘We find that this result is useful with problems that deal with 

  

  
  

  

    

related rates. a sinx? + sin?x b 1an(20) + - 
sin@ 

Exercise 6.2.3 ¢ osindx d cos[}(j 

e cos30 f sin(e) 

1. Use the product rule to differentiate the following 
and then verify your answer by first expanding the g tan(log x) h Jeos(2x) 
brackets. 

7 Differentiate the following. 
a 2+ 1)(2x—x3+1) 

a Q2xt1 b 2e4-3x 

b (P Hai-1) 
¢ 2¢4-347 d Jex 

1 Ly . L-1) 5+ 
- 5 edx £ % Q2x+d 

d (B Hx-DE3+x+1) 
g Lo h : 2 - 

+ 
2. Use the quotient rule to differentiate the following. 2 , e 

i 3 -6x+1 j esin(8) 
x+1 % x+1 

® x-1 B x+1 ¢ X241 . 
) 8. Differentiate the following. 

d £ e - f . 3L +1 = i x3-1 2x 1-2x 5 log (2 + 1) b log (sin® +0) 

3 Differentiate the following. 1 
c log.(e¥—e™) d loge(m) 

a evsinx b xlog x 

e (logy)? f flog x 
c (22 + 4x) d x*cosx 

g loge(a/x—1) h log (1 —x%) 

e sinxcosx f (1+x2)tanx 

9. Differentiate the following. 

4. Differentiate the following. 
a xlog (x3 +2) b WJxsin2x 

i X B cosx & 
sinx x+1 e+l & cos2. /B d Be-2P43 

log (1 
q sinx . ¥ ¢ logex e cos(xlog x) f Oge( OE,Y) 

Jx log x+1 x2—d4x 10x+ 1 g % hoo 
sin(x?) log (10x+1) 

5 Differentiate the following. 
10.  Find the value of x where the function xwxe™ hasa 

a eSxtx horizontal tangent. 

b sindx — %cos6x 

! 
c o3 log (2x) +9x2 11. Findzthe gradient of the function x»—»sine), where 

¥E==. 
n 
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 
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Find the gradient of the function x log (x?+4) at 
the point where the function crosses the y-axis. 

For what value(s) of x will the function xw-In(x2+ 1) 

have a gradient of 1. 

Find the rate of change of the function x e~ ¥+2 g 

the point (1, ). 

ok aisi T, Find: adx(smxcosx) b d)(smx) 

a 

If y is the product of three functions, 

ie. y = flx)g(x)h(x) , show that: 

% = f1(®)gx)h(x) +Ax)g' (x)h(x) + fix)g(x)h'(x) . 

b Hence, differentiate the following: 

i x2sinxcosx ii e’ sin(2x)log (cosx) 

a Given that f{x) = 1—x%and g(x) = logx , find: 

i (fog)(x) i (goN)'(x) 

b Given that f(x) = sin(x?) and g(x) = e, find: 

i (fog)'(x) ii (gof)'(x) 

Given that T7(8) = ccoskb oo determi 2+ 3sink®’ > letermine 

() 

If Ax) = (x—a)™(x—b)" , find x such that /'(x) = 0 

If f(8) = sin6”cos®”, find O such that /'(8) = 0., 

  

21.  Differentiate the following. 

a S(x) = cotdx b g(x) = sec2x 

g flx) = cosec3x d y= sin(Berg) 

22.  Differentiate the following. 

  

a secx? b sinxsecx 

c In(secx) d cotdx 

x cosecx 
e ; f — cosecx sinx 

Extra questions 

  

Derivative of Inverse Trigonometric Functions 

In this section, over an appropriate domain, either expression 
Sin~!(x) or arcsin(x) can be used. Similarly we can use for 

Cos~!(x) and arccos(x) as well as Tan"!(x) and arctan(x) 

. That is, 

Sin~!(x) = arcsin(x), -1 <x<1, 

Cos~!(x) = arccos(x), -1 <x<1, 

Tan~!(x) = arctan(x), —eo <x <oo. 

It is important to keep track of how the domain of some 

functions is not the same as that of their derived function. For 

example, although the function y = arcsin(x) is defined for 

~1 <x< Lits derived function, & is defined for -1 < x < 1. 
B < x 
i.e. the end points, x = +1 are not included. 

Derivative of Sin™'(x) 

By definition, Sin~!(x) is defined for x € [~1, 1]. We start by 

letting y = Sin~!(x),-1<x<1. 

Then we have that y = Sin"!(x) & x = siny.fgsys 

1
A
 

= I dx n T <y< So, o CaRY, — SYSS = 

8 o 2 7%



  

Note the change in domains! 

Now we express cosy back in terms of x: Using the identity 

cos?y +sin?y = 1 we have: 

cos?y = 1 —sin2y..cosy = +a/l —siny = +41-x2 

So, at this stage, the derivative of Sin~!(x) is given by: 

dy_ oy ! 
dx T f1_2 

  L, —l<x<l. 

T n 
However, over the interval 3 <y <§ we have that cosy is 

positive and so we only use the positive square root. 

We then have the result that 4 — 
X 

;,—l<x<]. 
2 

Note that we could have arrived 
at the same conclusion about the 

sign of the derivative by looking 

at the graph of Sin~!(x) for 
xe (-1,1). 

Using the graph of Sin~!(x) 
for x& (=1,1), we can see that 
over the given interval the gradient anywhere on the curve is 

always positive and so we have to choose the positive square 
root. 

Derivative of y = Sin"(g), —a<x<a wherea>0 

Using the chain rule for y = Sin~! (s), —a<x<a we set 

u= g:y = Sin~'u, -1 < u < 1, which then gives: 

  

Derivative of Cos™(x) 

Starting ~ with  the  principal  cosine  function 
f(x) = cosx,0<x <7 we define the inverse cosine funcnon, 

SHx) as fl(x) = Cos™'(x),~1 <x<1.Letting” ~ S 
wehave y = Cos™!(x), -1 <x<1 sothatx = cosy,0<y<m 

Differentiating both sides with respect to y we have 

dx ax =, <y< dy_ 1 @ siny, 0<y < n::dx Sy’ ,0<y<m   

DIFFERENTIATION 

Note the change in domains! 

Using the trigonometric identity 

  

  

sinfy = 1-cos?y  we have 

siny = £4/1-cos?y = +1-22. 

Therefore, 
dy _ ! o 

dx +1-x2 ¥ 

We now need to determine which sign to choose. Using 
the graph of y = Cos™!(x),~1 <x< 1 we see that, over this 
domain, the gradient is always negative and so we choose 

N1-x2 

Derivative of Tan"!(x) 

Again, we start with a principal tangent function 

Sf(x) = tanx, Loy 
2 2 

We define the inverse tangent function, /() as 

£1(x) = Tan~!(x), —eo <x <. Letting y = f~!(x)_we have 

y = Tan"!(x),~eo<x<oo S0 that x= tany, 5 <y<3. 

Differentiating both sides with respect to y we have 

A gty Moy B L Ty T 
BT Y Rt R T Rty 22 

However, tan2y+ 1 = sec2y, therefore: 

dy - 1 T 1 s     2 T 
dx 1 +tan2y 2 

  
a Let u=75 so that f(x) = arcsin(x) and as x 

2 

~lsugl=-25x<2. U 
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CHAPTER 6 > 5 

Using the chain rule we have, 

du 
dx 

d . f(x) = L(aresin(u)) - ody x x+1 
du 4. Find dx if y = arctan| 1 + arctan & 

  

Hence, find the real value of k, if y = k. 

5. Show that if ya/1 

(1-x2)y' = 1+xp- 

= Sin"!x, then     

6a  Show that Sin~!x+Cos~'x = k, where k is a real 
  

  

1x) = —L : That s, f'x) = oy “2<x<2 number. 

Note: We could have simply used the standard result, b Find the value of k. 

di(arcsin(fn = ! ,—a<x<a witha=2! 7. Differentiate the following and find the implied 
* & a? —x? domain for each of /%) and /'), 

b Using the chain rule: 

1 
i(arctan[x+2]) = —co<x+2<o0 

dx . 1 +[x+2) ; 
a Ax) = arcsm[gj 

= Goeitf1 
c Using the chain rule, b fx) = Cos (.; B ]) 

dyy 2 e 4 — (Sin-! ~1X &= JT0,-242) U (212, /T0) ¢ fw = (i cos 2) 

e L S L S s e D) 
Extra questions 

Exercise 6.2.4 

  

1 Differentiate with respect to x, each of the following. 
Differentiating y = a* 

a arctan(2x) b arcsin(g) 

We have already considered the derivative of the natural 

c Cos™!(2x) d Sin~!(4x) exponential function y = e*. We extend this toa more general 
form of the exponential function, namely, y = a*,a#0,1. 

  

   

e arctan(gj f aresin(x — 1) 

The process is straightforward, requiring an algebraic 
2 Differentiate with respect to x, each of the following. rearrangement of y = a*. 

a arctan(x2) b Sin~!(/x) Taking log (base e) of both sides of the equation, we have 

c arccos[l] d arcsin(cosx) y=a"elog,y = log,a* 
A 

e arctan(/x— 1) f In(arcsinx) So that, log,y = xlog,a 

g Tan~!(e¥) h arccos(e™) Next, we differentiate both sides of the equation: 

d d 
3, Differentiate with respect to x, each of the following. Z(IDEE,V) = K(XIDEQ a) 

a xTan"lx b arcsinx Now (this is the tricky bit): 
& 

x arctanx i d | o 
¢ = d - Using the fact that £ (log, /(x)) = ff((—x“)) or XA and 

e arcsin(x?)Inx f LCOS’I Jx since y is a function of x, we can write d%(log‘,y) = }l g‘i—: 
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That is, we have replaced /(x) with y. 

4 xlog, a) ‘This means that we can now replace %( log,y) = dx( 

ith .42 - 4, ,w1thy % dx(xlcgga). 

4 1 ‘!Z dy _ dx(xlogga) loga-. % ]ogea@dx (log, a)y 

= (log, a) xa* 

L& _ 

a Based on our result, we have that: 

% = 5x(log,2)x 2% = (log,32) X 2%. 

b Using the result that: 

if y = ak* then % = k(log ,a) x ak*, we have that 

‘—’fi = 4(log,3) x 3% = (log,81) x 34 

c Letting « = 2x+ 1 gives y = 521 as y = 5%, 

Using the chain rule we have: 
dy _ dvdu _ G = Gy~ (log5)5"x2 

dv _ 241 & = (2log5)x 52 

= (log,25) x 52 *! 

Note that from (2log.5)x5**! a number of different 
acceptable answers could have been given. For example, 

(2log,5) x 52+ = (2log,5) x 52¥x 5§ = 10(log,5) x 52 

‘We must not forget that we could have determined the 
derivative of f{x) = a* by usinga first principles approach. 

h 
Thatss, /) = TmAEED=SG) o G Pt 

h=0 h h—0 h 

As x is independent of the limit statement, we have: 

. a¥(ah—1) oo Tl =1 () = lim C@=D e i 2L 
e nSo  h Xh‘—n:o . 

All that remains then is to determine hm TI 

We leave this as an exercise for you. However, a starting point 
is to use a numerical approach, i.e. try different values of 

a (say a = 2, a = 10) and tabulate your result for a range of 
(small) values of h (i.e. make h smaller and smaller). Then 

compare your numerical values to that of log,2 for a =2 and 

log,10 for a =10 and so on. 

Differentiating y = log x 

As in the last section, we use a simple algebraic manipulation 
to convert an expression for which we do not have a standard 

result (yet!) into one we have met before. In this case we make 

use of the change of base result. 

lo; 
ie. given log v = % the equation v = logx can then be 

o 

written as y = @Xlog‘m 

b 
Now, |‘,g o is a real constant, and so, we are in fact 

dxfferentlatmganexpresslon of the form y = k xlog x, 

1 where k = g 
log a 
  

1 
However if y = kxlogx then % = kx 7, meaning that we 
then have: 

  

  

= dr o 1 1 a Given that if ¥ = log x then e log axx then 

fory = IOEZX i.e.a =2 we have that 
dy - L = b 

dx Iog52 X (log,2)x 

b This time we start by letting # = 2x—1 so that 
¥ = logo(2x—1) = logqu. 

Then, combining the chain rule with the results above 

(i.e. a = 10) we have: 

-Z=gzd-—"=( 1 x)xz 
dx  dudx log 10" u 
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I S 
= (log 10)(2x— 1) 

c Again we combine the chain rule with the results of 
this section, where in this case, a = 4. 

Let u = tan8x = % = 8sec?8x, then 

= . 1.1 
e log"‘"fidu ma = u 

Q:@@=[¢ ] 2gy = Bsec?8x Therefore, &% = 290 = (75 )% 85°¢%8% = 1) nss 
=8 

(In4)cos8xsin8x 
8 

[using cos8xsin8x = ;—sin ]6x] = (In2)sin16x 

Exercise 6.2.5 

L Differentiate the following. 

a yo=ar b y=3* 

¢ y=8 d y=3x5% 

e y=T1x6" f y=2x10" 

g y =62 h y =23+l 

i y=5x73-% 

2. Differentiate the following. 

  

  

a pe=xx3F b y =28 lsin2x 

c y = Ste d y= xt S 

& - x¥2 £ o 

1 +4x 57 

8 Differentiate the following. 

a » = logsx b ¥ = log(5x) 

c ¥ = log,(2x) d ¥ = logg(x+1) 

e y=log(+1)  f y = logs:x=3 

g » = xlog,x h ¥ = 3%logyx 

= 7 . o _ _a* 
i y = a*log x j » og * 

__(x+1) o X 
k pr= =t ] y= 

log o(x +1) logoa/x 
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4. Find the value(s) of x where the gradient of fx) = 4—2 

is zero. * 

5: For what value(s) of x will a slope of f(x) = x?x2* 

be zero? 

; 
6. Giventhat g(x) = r[%) , find the exact value of g(1) 

7. Find h(gj where /(x) = TS0 + sinfx . 

8. Find where d—l = 0 given that y = 10%log,¢x —10x., 
dx 

9. Find the gradient of the following curves at the point 
indicated. 

a y =210 atx =1 

b y = sin(4%) atx = 0 

c y= v"logelx aty = 0 

_ _10x 
d Tog or atx = 10. 

10.  Differentiate the following. 

  

a s4x+1 b -2 

c 1023 d 

L 

@ I £ 4-/cos2x 

Extra questions 

  

Higher Derivatives 

Since the derivative of a function f is another function, /" 

, then it may well be that this derived function can itself be 
differentiated. If this is done, we obtain the second derivative 

of f which is denoted by /" and read as “f-double-dash” 

The following notation for y = f(x) is used: 

First derivati L) oy irst derivative dx =1 

d (d a2 i 
Second derivative dj[;};’) = ‘73; =" [=y") 

So, for example, if f(x) = x*—5x2+ 10 

then /'(x) = 3x2—-10x and /"(x) = 6x- 10,



  

2 
The expression d_zl is read as “dee-two-y by dee-x- 
squared” and the expression y" is read as “y-double-dash”. 

a Let y = x*-sin2x then y = 4x3-2cos2x and 

3 = 12x2+4sin2x. 

i _ 2x 
b Let fix) = In(2+ 1) then /'™ = 577 and 

ey = 262+ 1) 2x(2x) _ 2-2x2 
1o (x2+1) x2+1)?2 

€ Let y = xSin~!x then 

oyl +(1)xSin~lx = —X 

D x T2 =xx A3y - —L 2 ] 

+Sin~lx     

  

Ly 
dx?    

1 =1 4 
(A =x)f1-x2 J1-x2 

  

1 1-x2 e b o Te¥S 
A =x)1-x2 (1-22)41-x2 

_ 2-x2 

(1-x)1-x2 

e T e e S 

As we can see from Example 6.2.13¢, some second derivatives 
require the use of algebra to obtain a simplified answer. 

4. Consider the function f(x) = 

D]IS TN To ] 

Note then that, just as we can find the second derivative, so 
too can we determine the third derivative and the fourth 
derivative and so on (of course, assuming that these derivatives 

exist). We keep differentiating the results. The notation then 
is extended as follows: 

Third derivative is /" (x) (“f-triple-dash”) and so on where 

the nth derivative is £ (x) or d"¥. 
dx" 

Exercise 6.2.6 

1. Find the second derivative of the following functions. 

a fx) = x5 

b y=(+20* 

c fix Hi where xe R 

_ 1 
d fix) = Toz 

e y=G=-Nk+1) 

T ’% where x € R\{2} 

i y = Inx 

j Sx) = In(1-x?) 

k v = sin4@ 

1 Slx) = xsinx 

2. Find the second derivative of the following. 

a arctanx b arcsiny 

c arccosx d xarctanx 

. 1 
e arcsinJ/x f arccos(—) 

S 

log x 
3. Findthesecondderivativeofthe function /(x) = - 

Find a formula for the second derivative of the function 

fony = 2 x) =   

1 
—x#-1, 
x+1 

Find the first five derivatives by differentiating the 
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function five times. Hypothesise a formula for the 

nth derivative of this function. Use the method of 
mathematical induction or other appropriate method 

to prove that your formula works for all whole 

numbered values of n. 

5. Find a formula for the second derivative of the family 
of functions f(x) = [L}j where 7 is a real number. 

X 
ny ' 

6. Given y = l+ prove that 4 = " a1 " (1—x)n! for 

Extra questions 

Implicit Differentiation 

Implicit relations 

Most of the equations that we have dealt with so far have 

been expressed in the form y = f(x). For example, 
y=sin(2x)+ 1,y =x3-2x, p = In(x—e"), that is, y has 
been expressed explicitly in terms of x so that for any one 
given value of x we obtain a unique value of y by substituting 
the x-value into the given equation. 

Expressions such as xZy+y-2=0, sin(xy) =1, 

ety = x+y, are called implicit equations because these 

equations define y implicitly as a function of x. Note then 
that although y = x> defines y as an explicit function of x, 
the equation y2+ (x +x2)y+x3 = 0 defines y implicitly as 

functions of x - in fact, we have that two functions are defined 
implicitly by the equation P (x+x)y+xd =0 - they 
are ¥ = —x and ¥ = —x*. We shall see how it is sometimes 
possible to extract functions from an implicit equation. 

  

It may be possible for an implicit function to be rearranged 

to form an explicit function. For example, using the equation 

  

a2y+y-2 =0 we have tzha( (2+1)y =2 and so, we 
obtain the equation y = Y which defines y explicitly in 

terms of x. ! 

Using the implicit function 2+ (x +x?)y +x* = 0 we have 

(after expanding and grouping) that 

W@+ = 0 @) (ytx) = 0oy = 

2 So, we see that in this case two functions are 
defined implicitly by the equation y? + (x +x?)y+x3 = 0. 
ory= - 
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In fact with more complicated equations it may not be possible 

to even produce an expression for , i.e. to solve explicitly for y. 
Sometimes even simple equations may not define y uniquely 

as a function of x. For example, if we consider the equation 

ety = x+y we realize that it is not possible to obtain an 

expression for y explicitly in terms of x. The question then 

arises, “How can we differentiate equations such as these?”. 

We start by considering the equation x%y = 2. As y is 
implicitly defined as a function of x, then, one way of finding 

the derivative of y with respect to x is to first express y 

explicitly in terms of x: 

2 dy 4 
So, from x2y = 2 wehavey = == = = 

X Tdx i3 

This method works well, as long as y can be expressed 

explicitly in terms of x. 

Now consider the equation 2x>+y3 —y = 2. This time it is 
not possible to express y explicitly in terms of x and so we use 
a procedure known as implicit differentiation. 

The key to understanding how to find % implicitly is to realise 

that we are differentiating with respect to x — so that terms in 

the equation that involve 'x's only can be differentiated as 
usual but terms that involve 'y's must have the chain rule 

applied to them (and possibly the product rule or quotient 
rule) because we are assuming that y is a function of x. 

Before we deal with the equation 2x2 + 3 —y = 2 we discuss 

some further examples. 

To differentiate y* with respect to x, with the assumption 
that yisa function of x we use the chain rule as follows: 

dv dy 3 o3 2., 0 Y g = 

To difl'erennate siny with respect to x, with the assumption 

that y is a function of x we use the chain rule as follows: 

9 ity = Losingy 2 = ey 2 dx(smy) dy(sm_y) T cosy 5 

Notice then that to differentiate " with respect to x, with the 
assumption that y is a function of x we have: 

To differentiate x> with respect to x, with the assumption 

that y is a function of x we use the product rule and chain rule 
as follows: 
—(sz) (r)><v2+x><d—_ (»?) (product rule) 

(chain rule for y*) 

  

_ 24+ ex | A2y =1xy +'\x[dy())d_ 

=) +X[2,V . Z‘;J . 

S



  

ooy o dy And so we have that ) = yitaay et 

Now let us return to the equation 2x?+y3—y = 2 and find 

the gradient of the curve at the point (1, 1). 

We start by differentiating both sides of the equation with 
respect to x: 

te L4y = 4, Le.dx(Zx +y3-y) dx(z) 

Then, we differentiate each term in the expression with 

respect to x: 

Aoy dzy_doy - Loy o -Loy =0 

Use the chain rule 4x+%)(yl) Ay _dy g 
dx dx 

4x+(3y2)-%~% -0 

Then we group the gl terms and factorise: 
X 

4x+(3yz~1)% =0 

dy _ __4x 
Then, we solve for ‘.12: _— 

de’ dx o 32 

The first thing we notice is that the derivative involves both x 
and y terms! Now sometimes it is possible to simplify so that 
there are only x terms in the expression and sometimes it can 

only be left as is. In this case it will be left in terms of x and y. 

Then, to find the gradient of the curve at the point (1, 1) we 
substitute the values x = 1 and y = 1 into the equation of the 
derivative: & — __4 _ _ 5. 

dx 3-1 

  

a Differentiating both sides with respect to x (which can 
be abbreviated to diff. b.s.w.r.t x): 

40 _4d Ay + Ly = L) = L5y L)+ L) = 0 
   

  

4x+ [d_dx(x) Xy+xx d;‘i(y)] =0 (Using product rule) 

DIFFERENTIATIO 

:.4x+[l x;wx%] =0 

A g @xdr 4x -y 

figx _ (4xty) 
dx X 

b Here, the first term must be differentiated using the 

quotient rule. We consider this term on its own first. 

Its derivative with respect to x is: 

4 4, dy_ 1[!) ~ ¥R EO) PR ) ~ PRSP 

dx\x 2 %2 

Then, diff b.s.w.r.t.x we have: 

Ay 32) = digs 
#Er) - fen=    

A 3,2 = 622 +dx(3‘V) 6x 
d: 

dy XX=—y 
. dx g2 ..){—2+6y><dx 61 

HER %~ v+ 6x2yx % = 6x* (multiplying through by x?) 

: d 
%(x +6x2y) = 6x*+y (grouping the fi terms) 

Ldy _ 6xt+y 
Vdx o x+6x2y 
  

& e d 
c diffbswrtx: g (xSinly) = d_x(ezy) 

(Using product rule for L.H.S and chain rule for R.H.S) 

d in-1 4 sin-ly) = Lo dx(x) xSin~ly+xx dx(Sm y) dy(e y)dx 

lein"y+x2'§(Sin"y)% = 222 (chain rule) 

  

  

. X dy _ ZyéZ 
Sy TR e 

i dy g di ~Sin~ly = (Zez)'— L )—“ (grouping the ¥ terms) 
/1 —y2 dx dx 

dy _ J1-y2(Sin"ly) 

dx e [T-)2-x 

e T e et e e 

Exercise 6.2.7 

d 
1. Find the first derivative, i , of the following relations 

in which y depends on x. 

a 2+x2+y =6 b —-3+x24)2=5 

¢ Llip-n d yHay =9 
¥2 
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e 4 =y+tyxe* f cosx+xy = 12 

8 x+in(y) =8 h %+x3y =11 

i 2x+ysinx =5 j (x+y)2 =12 

Kk xt=pyl 1 2ty = x 

  

flx) is a relation on a real variable x such that 

/) —f(x) = e5~5 . Find the coordinates of the 

point for which x = 1 and the gradient of the graph of 
the function at this point. 

e 
A curve has equation = +2x =3, 

Differentiate the equation implicitly and hence prove 

that: 

    

  

35 d) = 25+ 25y + x2 2xt+é€ (2)() x N 
x 

Use implicit differentiation to find the coordinates 
of the points on the circle x>~ 3x+y?—4y = 7 for 
which the gradient is 2. 

Consider the conic section with equation: 

  

x2+xy—y 

a Make y the subject of the equation. 

b Prove that the domain of the relation is 

J-eo,4]U 4,0 

c Find an expression for a5 
dx 

d Use a to eliminate y from your expression for 
v, 

dx 5 
dy  5t.5 

e Hence prove that as x — Feo, == — ———== 
P dx 2./5 

f What type of curve is 
x2+xy-y? =207 

represented by 

A curve has equation x* +y* = 16, 

a Find the domain and range of the relation. 

b Express the gradient, Z{ ,in terms of x and y. 

c Eliminate y from your expression in part b. 

d What is the gradient in the region of the y-axis? 

Consider the family of relations x2"+y2" = k" 

where k is a constant and n is a positive integer. 

e Find the domain and range of the relation. 

. it .4 
f Express the gradient, 7, in terms of x and y 

and hence describe the form of the graph of the 
relation as n becomes large. 

7. 

a If PV;‘Y: ¢ where c and Y are real constants, 
find s 

b Find 4 if S =y 
dx J,‘” n 

8. Find the slope of the curve 

a B+y3-x2y =7 at(1,2) 

b Pk =0 at( 

  

dy 
9. Find e if: 

a log (xy) = y,x>0 

b xTan!(y) = x+y. 

10. The graph of the curve 

(2+y2)? = 4x? s 
alongside. 

shown 

a Find the gradient of the 

curve at the point where 

x = 1. Explain your result. 

  

b Find the gradients of the curve where y = %, 
giving your answers to 2 decimal places. 

Answers 

 



  

Equation of Tangent 

he gradient of a curve 4 

y = flx) at any point 

(xpy)) is equal to the 

gradient of the tangent to the 
curve at that point. 

This allows us to find the 

equation of the straight line 
with this gradient, through - 
the given point - as in this 
example: 

; =s_2a@ o 1. Given that y = 5—x e = -2x. 
X 

2. ‘Then,forx=1,wehave & = _3(1) = -2. 
dx 

Therefore, using y—y, = m(x—x,), with m = -2 and 

(x},»1)=(1,4), we have the equation of the tangent given 

by: 

y-d= (-1 oy-4=-2x+2 

Thatis,y = —2x+6 

s Sy S s P T R e R W 

AGH N ToNS 

  

Given that y = x3-8=)' = 3x2, Then, for x = 2, 

¥y =3x22=12,iem=12. 

In order to use the equation y—y; = m(x—x;) we need 
both x- and y-values. As we are only given the x-value, 
we now determine the corresponding y-value, ie. 
x=2=y=2-8=0. 

With (¥;,3)=(2.0) the equation of the tangent is: 
(-0) = 12(x-2) &y = 12x-24, 

Equation of Normal 

To find the equation of the normal at the point (x},v,) 
we first need to determine the gradient of the tangent, m,, 
and then use the relationship between the gradients of two 

perpendicular lines (given that the normal is perpendicular 

to the tangent). 

To find the equation of the normal we need to repeat the 
gradient calculation but with a gradient determined by the 
condition that the product of the gradients of perpendicular 

lines is -1: 

mxm' =~1 
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Exercise 6.3.1 

1. Find the equations of the tangents to the following 
curves at the points indicated: 

a = 2-x+2 at(2,4) 

  

  

First determine the gradient of the tangent: % = 6x2-2x. b y=x*-4x2+3 at(1,0) 

D 6(12-2(1) = 4 Thatis. m, = T Atx =1, we have ;- . Thatis, m, = 4. c y=dJx+1at(3,2) 

We can now determine the gradient of the normal: d = d : 2 % at (5,1) 
= 

using my = _1 wehave my = -%. e flx) = :ri—l,x¢~l at(l,%) 

Wy 
Using the equation of a straight line, y—y, = m(x—x)) f fix) = ZTXZ,x#—Z at(2,1) 
where (x),y,)=(1,2) and m = 3 X 

g xox(x®-4) at(2,8) 
we have that y -2 = —%(x— edy-8=—x+1 2 52 

h x»—)]:,x:lat(lfii) 

Hence the equation of the normal is given by 4y +x = 9. 
2 Find the equation of the normal for each of the curves 

in Question 1. 

3. Find the equations of the tangents to the following 

curves at the points indicated: 

a y=xe*at(l,e) 

  

b xm%‘.x:to at(l,e) 

We first need to determine the y-intercept: c flx) = x+sin(x) at (T, T) 

x=0=y=0xe"+2=2. 

d y = xcos(x) at (T, 1) 

That is, the curve passes through the point (0, 2). . = 

¢ = sin(x) at (E’ 5) 
Next, we need to determine the gradient of the tangent where 
x=0. f xwexlog, (x+1at(e-1e-1) 

From y=xe2'+2= D et x(-2¢72%)  (using g xoxe? 1 at(0,0) 
the product rule) % 

2l h fix) = sin(2x) + cos(x) at (0, 1) 
= et —2xe™ 

a 4. Find the equation of the normal for each of the curves 

Therefore, atx =0, af =e20-2(0)e2® = 1-0=1, in Question 3. 

‘Thatis, m, = 1 = my = —% =-ls 5. Find the equation of the tangent to the curve 

¥ = x2(x2- 1) at the point A(2, 12). 
‘Then, using the general equation of a straight line we have 

the equation of the normal as y - 2 = ~1(x - 0), or y = —x + 2. The tangent at a second point, B(-2,12), intersects 

the tangent at A at the point C. Determine the type of 
triangle enclosed by the points A, B and C. Show that 
the tangents drawn at the points X and Y, where x = 
a and x = -a respectively will always meet at a third 

point Z which will lie on the y-axis.



ALy 

  

   Extra questions 

    

     
Increasing and :fié‘;" 

Decreasing Functions @G 
A function f is said to be A 

  

increasing if its graph rises as o5 
53 2 2D — — 
it is sketched from left to right. fop| — | 

That is, if : Il 
__l_l__“I s x 

x> x) = flxy) > flx)) (i the 

y-values increase as the x-values Y 
increase). 

S — 

Similarly, S| — - 
1 3 x 

A function f is said to be 
decreasing if its graph falls as it is sketched from left to right. 

That s, if x,>x, = f(x,) </(x,) (ie. the y-values decrease 

as the x-values increase). 

... A calculus point of view 

The derivative can be used to determine whether a function 
is increasing or decreasing and so it can be used to help find 

those values of x for which the function is increasing or 
decreasing. 

  

This means that, to determine where a function is increasing 
or decreasing, the values of x for which /'(x) > 0 and /"(x) <0 
respectively need to be found. 

  

By definition, a function is increasing for those values of x for 
which /'(x)>0. 

Therefore find: 1. f'(x) 

2. the values of x such that /"(x) >0 

Now, fix) = 1+4x—x2=/'(x) = 4-2x 

Then, /'(x) >0 & 4-2x>0 

4>2x 

< x<2 

  

We could also have determined 
this by sketching the graph of 
fix) = 1 +4x—x2. The turning 

point can be determined by completing the square, ie. 
flx) = —(x—2)2+5 giving the axis of symmetry as x = 2. 

  

      

  

   
Unless you already know what this function looks like, it is 
difficult to determine the interval for which the function is 
increasing without using calculus. 

First we differentiate (using the product rule): 

"(x) = la 7(x) lxlog!t+xxx log x+1 

Now, f(x) is increasing for values of x for which f"(x) >0 . 

Therefore we need to solve f(v) = vlog v v>0: 

logx+1>0.   

log x+1>0 log,x>-1 

ex>e! 

  

[ 
  (The inequality can be 

  

determined by making use ofa /(1) ~ log x+1 

sketch of flx) = xlog,x,x>0) = 
Uy 

That is, f(x) = xlog,x, x>0 ¥ 

increases for values of x such 

that x>e . —         
Note that we could have used 
the graph of the derivative function, y = f'(x), and from it, 
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determined those values of x for which the graph is above the 
x-axis. 

Stationary Points 

So far we have discussed the conditions for a function to be 
increasing (f'(x)>0) and for a function to be decreasing 
(f'(x) <0). What happens at the point where a function 

changes from an increasing state (/'(x)>0) to f'(x) = 0 
and then to a decreasing state (f'(x) <0) or vice versa? 

Points where this happens are known as stationary points. At 
the point where the function is in a state where it is neither 
increasing nor decreasing, we have that /'(x) = 0. There 
are times when we can call these stationary points stationary 
points, but on such occasions, we prefer the terms local 
maximum and local minimum points. 

At the point(s) where % = /'(x) = 0 we have a stationary 

point. 

  

There are three types of stationary points, 

namely; local maximum point, 

local minimum point and 

stationary point of inflection. 

% Local maximum YA Peey) 

When sketching a curve, if the 
following properties hold: 

i. At P(x,p)), 

D _ p(x) = 0 thatis/"(x,) = 0. 
dx ! 

i For  w<x then >0 
dx 

x>x; then %<0 

where the two chosen values of x   
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are such that one is just slightly less than x; and the other 

is just slightly greater than x;, then, y = fix) has a local 

maximum point (also known as a relative maximum) at the 

point P(xy, ). 

iii. Graph of the gradient function: 

Notice that the values of % are changing from positive to 

negative. Sometimes this is referred to as the sign of the first 
derivative. At this stage, it isn’t so much the magnitude of the 
derivative that is important, but that there is a change in the 
sign of the derivative near x = x, . 

y'>0 
P A 

V<0 

In this instance the sign of the 
derivative changes from positive to 

negative. X 

  

  
  

This change in sign is sometimes represented via the diagram 

above, which is referred to as a sign diagram of the first 
derivative. Such diagrams are used to confirm the nature of 
stationary points (in this case, that a local maximum occurs 
atx = x). 

  

First we differentiate: flx) = —3 +4x—x?=/"(x) = 4-2x 

Next, equate /"(x) to 0 and solve for x: 

0=4-2x ox=2 

To ensure that we have obtained a 4 

local maximum we choose values % 

of x slightly less than 2 and slightly 
greater than 2, for example, choose 
x=19and x=2.1. 

    
For x = 1.9, we have that /'(1.9) = 4-2(1.9) = 0.2. 

For x = 2.1, we have that /'(2.1) = 4-2(2.1) = -0.2. 

Using the graph of the gradient function,%, confirms that 
there is a local maximum at x = 2.0. 

The local maximum value of f(x), is found by substituting 
x =2 into the given equation: f{2) = ~3+4(2)-(2)2 = 1. 
That is, the local maximum occurs at the point (2, 1).



  

2. Local minimum 

  

» v =) 
When sketching a curve, if the 
following properties hold: 

i AtPGxpyp), Pl 

4~ iy = 0 thatisf (r - ; T ['(x) = 0 thatisf"(x;) = 0. d__:__>x 

dy | 
ii. For x>x, then s 0 dx‘ L 

dx 3 

dy ! 
x<x then i <0 : 

where the two chosen values of xare __| . 
such that one is just slightly greater x e 
than x; and the other is just slightly £ 
less than X, then y = f(x) has a local minimum point (also 

known as a relative minimum) at the point P(x}, ;). 

iii. Graph of the gradient function: 

Notice that the values of dr 

  

dx — V>0 
are changing from negative ___ ' =l0 

to positive. Sometimes this is , o] * 
referred to as the sign of the first 1 
derivative. 

Again we can represent the change in the sign of the first 
derivative via the diagram alongside, which is referred to as a 
sign diagram of the first derivative. Such diagrams are used 
to confirm the nature of stationary points (in this case, that a 
local minimum occurs at x = x| ). 

  

First differentiate (using the quotient rule): 

Aoy erx 
1(5*) e O ) 
dx\x x2 x2 *2 

Wesolvefori(e—x) C0,ie 8D sl =0 
dx\x x2 

However, e*#0 for all real values of x, therefore, the only 
possible solution occurs if x = 1. 

To verify that we have a local minimum we select a value of 

x slightly less than x = 1 and one slightly greater than x = 1: 

For (x < 1): choose x = 0.9, we have that %(e;x) =-030, 

For (x > 1): choose x = 1.1, we have that di 
x 

  

Therefore, for x = 1 we have a dy 

local minimum point. dx 

0.9 1L0 1.1 x     The minimum value is therefore 
given by: Sign diagram of first derivative: 

1 
y= e]— = ¢, and occurs at the point (1, e). 

  

  

We start by differentiating and finding the stationary points 

(i.e. solving for 32 =0): 
X 

Now, y = sin(x) +%sin(2x) = % = cos(x) + cos(2x). 

Therefore, solving we have cos(x) + cos(2x) = 0 

cos(x) +(2cos?(x) = 1) = 0 
(2cos(x) = 1)(cos(x) + 1) = 0 

Therefore, cos(x) = % or cos(x) = -1, ie x = 73-‘,5?" or 

x == for xe [0,2n]. 

We can check the nature of the stationary points by making 

use of the sign of the first derivative: 
dr @ dy, 
de dx T dx 

wi
n | 

The graph of gradient function (near ¥ = 5_1r) indicates 
that a local minimum occurs at x = ?" And so, the local 

‘minimum value is given by: 

_ gnf 354 Lainf10m) = 353 
L s'“(3)+zs’“(3) T 

NB: In the process we have come across a new sign diagram 

(at x = 7). This is dealt with in the next section. 
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3. Points of inflection 

There are two types: 

A, Stationary points of inflection 

B. Non-stationary points of inflection 

A. Stationary point of inflection 

The following properties hold at a stationary point of 
inflection. 

i At P(x,p)), f'(x) = 0. Thatis /'(x;) = 0. 

i For x<x,/'(x)>0 and for x >x, f'(x)>0. 

Similarly, 

At P(x,3,), f'(x) = 0. Thatis /'(x2) = 0 

and for x <x, f'(x) <0 and for x> x,, /'(x) <0, 

That is, the gradient of A 

the curve on either side 

of x; (or x;) has the same 

sign. 

iii Graph  of the 

gradient function, 

y =70 

  

+H 

dy 
dx‘ 

Notice that the values of 

/'(x) have the same sign 
on either side of ¥ = x;, 

Notice that at x = x|, the 

gradient of f'(x) is also 

equal to zero. That is, the 

derivative of the derivative 
is equal to zero. 

  

  ‘Therefore if there is a stationary point of inflection at x = x, 
then /"(x;) =0. 

First we differentiate (using the product rule): 

- (x,nz(nz)fl% = 3- 12 +2)+ - D3(1) 
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= (x- D23 +2)+@x-1)] 

= (- )2(4x+5) 

Solving for % = 0, we have, 

(x-1)%(4x+5) = 0ex = lorx = 

  

‘We can now check the sign of the derivative on either side of 

x=1landx=-1.25 

Atx=1: 

For x =09, ZX = (-0.1)(8.6) = 0.086>0 
X 

Forx=11, gf = (0.1)2(9.4) = 0.094>0. 

As the sign of the first derivative is the same on either side of 
x = 1, we have a stationary point of inflection at x = 1, i.e. at 

(1,0). 

A sketch of the graph of y = (x— 1)3(x +2) quickly confirms 
our result. 

For x = -1.25, the graph shows a local minimum occurring 

at this point. 

  

We begin by determining where stationary points occur: 

fix) = Be = f(x) = 3x2e ¥ —x3e 

Setting /"(x) = 0, we have: 

3x2e—x3e¥ = 0 x2e¥(3-x) = 0 

We can use the sign of the first s =25 0 
derivative to help us determine _____f'=|0 ¥ 

the nature of the stationary point. L—f'<0   

At x = 3: Sign diagram: 

Forx =29, /'(29) = (2.9)%¢29(3-2.9) = 0.046>0 

Forx=3.1, /'(3.1) = (3.1)2¢731(3-3.1) = -0.043<0



  

Therefore there exists a local maximum at x = 3.1. 

Atx=0: 

Forx=0.1, /(0= (0.H201(3-0.1) = 0.026>0 

Forx=-6,1, 701 = (=0.1)2e%1(3+0.1) = 0.034>0 

As there is no change in the sign ¥=0 
3 ) '>0 

of the first derivative there is a r'>0 ! 
stationary point of inflection at = # 
x=0. 

Alternatively, we could sketch a graph of the function and use 
it to help us determine where 
the  stationary point of 
inflection occurs. 

  

== Y= 

S 

From the graph we can see that 
there is a local maximum at x 
=3 and a stationary point of 
inflection at x = 0. 

      

Therefore, the stationary point of inflection occurs at (0, 0). 

  

Notice that the sign diagrams of the first derivative in 
Examples 6.3.8 and 6.3.11 all look slightly different. We have 
done this to emphasise that, as long as the diagram provides 
a clear indication of the sign of the first derivative, then its 
appearance can vary. 

  

B. Non-stationary point of inflection 

VA 
The following properties 

hold at a non-stationary 

point of inflection: 
Py (x5, 75) 

i At Plxpy) \ /| | 
¢ LENES wid — 1T T = 
f"(x) = 0. & | | 

. 24 I 
ii. For x < x,, f'(x)>0 | | 

and forx)xl, | - | 

(250 ‘ L= 

Similarly, I 

T X 
At P(xpy,), f'(x)#0 

and f"(x,) = 

For X <X, /"'(x) <0 and for x> x,, ['(x) <0 

That is, the gradient of the curve on either side of x; (or x5) 

has the same sign. 

iii.  Graph of the gradient function, y = /'(x): 

Notice that the values of /'(x) have the same sign on either 

sideof x = x;. 

  

For the curve to have a non-stationary point of inflection at x 
=2 we need to show that: 

1. v _ gatx=2and A quicksketch of the function 
dx? indicates that a point of inflection 

occurs atx=2: 
2. the sign of the gradient, 

,is the same on both \ St 
fifies of x=2and P % 7 
  

3. Lhatg)-}#O when x=2. 
dx 

        flextog i i ) o 
G = Ao Sign diagram: 

:12{ 12x2 - 24x ——1——>2 
dx i V#0 i % 

S y< PO 

g Py 2 < dy__ Forx=2, o 12(2)%-24(2) and dx 16#0. 

= —15.876 and forx = 1.9 & _ > ik ~15.88. d Forx=2.1,< 
dx 

Therefore there is a non-stationary point of inflection at x=2. 

e | 

It is important to realize that it is not sufficient to say that “If 
f"(x) = 0 at x =a then there must be a point of inflection at 

s 

Does f’(a) = 0 imply there is a point of inflection at x = a? 

The answer is NO! 

Although it is necessary for the second derivative to be zero at 
a point of inflection, the fact that the second derivative is zero 
atx = a does not mean there must be a point of inflection at 

x=a. That is: 
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We use the following example to illustrate this. 

Consider the case where f(x) = x*. 

Now, /"(x) = 12x2, therefore solving for /"(x) = 0, 

wehave 12x2 = 0 x = 0. 

That is, /"(0) = 0. So, do we have a point of inflection at 
x=0? 

A sketch of f shows that although /"(x) = 0 atx =0, there is 

in fact a local minimum and not a point of inflection at x = 0. 

In other words, finding where /"(x) = 0 is not enough to 

indicate that there is an inflection point. To determine if there 
is a point of inflection you need to check the sign of the first 
derivative on either side of the x-value in question. 

Now, ix) = x3-3x2-9x+1=/"(x) = 3x2—6x-9 

Solving for stationary points we have, 

3x2-6x-9 = 0 3(x-3)(x+1) =0 

  
  

ex=3orx =-] : _;_f'>0 

I S — 
So that f(3) = -26 and f(-1) = 6. f'<0—— 

Using the sign of the first derivative, x==| 

we have: I20— 
— X 

Atx=3; f'<o 

Forx<3(x=2.9)/'(29) <0 andforx>3(x=3.1)/'(3.1)>0 

‘Therefore, there is a local minimum at (3, -26). 

Atx=-1: 

Forx<-1(x=-11) f'(-1.1)>0 and for x> -1 (x = -0.9) 

£1(-09)<0. 

Therefore, there is a local maximum at (-1, 6). 

348 

    
X 

Checking for inflection points: Fiepd 
=0 
  /<0 

We have: /"(x) = 0= 6x-6 = 0ex=1. 

Forx<1(x=09)f'(0.9) <0 and 

forx>1(x=11)f'(1.1)<0. 

As the sign of the first derivative remains the same on either 
side of x = 1, there is a point of inflection at (1, -10). Then, 

as the first derivative at x = 1 is not zero, we have a non- 

stationary point of inflection at x = 1. 

Curve Sketching 

The properties of the basic function are the first things to look. 
at when sketching curves. The main features are summarised 

below: 

« y=f(x) is the equation of the function 

. f0) - intercept(s) for f(x) 

. f(x) = 0 - intercept(s) for f(x) 

« determine the domain and range for f(x) 

« identify the asymptotes for f{x) = 2 
(%) 

« vertical asymptote(s): the solution(s) for g(x) = 0 

« horizontal asymptote: if deg, , = deg, then dividing out 
the leading (highest power) coefficients between p(x) and 

q(x), gives the asymptote: 

_ leading coeff. , 

= leading coeff. , | 

o also, if deg, < deg, , then the asymptote is: 

y= ) 
X —>too 

« oblique asymptote: if degpw > degqm, the quotient 24 (x) is 

the asymptote q(x,



  

First Derivative 

The properties of the first derivative also help us sketch 
curves. The main points are: 

« f (x) suggests the monotonicity (either increasing or 

decreasing) of f(x) in the interval S[a,b]. 

«  f'(x)>0: flx) is increasing in S. 

«  f'(x) <0:flx) is decreasing in S. 

o f (x) detects the existence of inflection point(s) in the 

interval S[a,b]. 

« f (k) = 0 but sign of f (x) does not change for x > k 
andx <k 

«  First Derivative Test for Optimum for £€§ 

o f(k) maximum: fx)>0 forx<k 

f'x)<0forx>k 

=0 

o f(k) minimum: fi(x)<0 forx<k 

fx)>0forx>k 

fk)=0 

Second Derivative 

«  f"(x) suggests the concavity of f(x) in the interval S[a,b]. 

«  f"(x)>0: fix) concaves upward in S. 

o f'(x) <0: fix) concaves downward in S. 

f(x) decreases 
frx<o 

concave down 

f*(x) increases 
f70>0 
concave up 

« f'"(x) determines the nature of an inflection point in the 

interval in the interval S[a,b]. 

« f"(k) changes sign, f "(k) = 0 and f (k) = 0, then f(k) is 
a horizontal inflection point 

A o] 

« f"(k) changes sign, f "(k) = 0 and f (k) # 0, then (k) is 
a non-horizontal inflection point 

non-horizontal 
inflection point 

horizontal 
inflection point 

  

  
«  Second Derivative Test for Optimum for £ €S 

o fk),, f'k)<Oandf(k)=0 

o fik),,. f'k)>0andf(k)=0 

Other Factors 

+ global minimum is the minimum value of y = f(x) on the 

entire domain. 

« local minimum is the a turning point y = f(x) at x = k, for 
[ (x) changes from negative to positive. 

+ global maximum is the maximum value of y = f(x) on the 
entire domain. 

« local maximum is the a turning point y = f(x) at x = k, for 
f(x) changes from positive to negative. 

The following table summarises the effects of the first and 
second derivative on the curvature of a continuous function 
  

fx)>0 fx<0 
  

f0>0 

  

  

frx) <0 
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Exercise 6.3.2 

1. 

350 

Draw a sketch of the graph of the function f{x),x€ R 
, where: 

a A1) = 2,7'(1) = 0,3) = -2.£'(3) = 0, 
f'(x)<0forl1<x<3andf'(x)>0 forx>3and 

x<lL 

b S'(2)=0,/(2) =0, f'(x)>0 for0 < x <2 

andx>2, f'(x) <0 forx<0and f(0) = 4. 

c S14) = f10) = 0, 7'(0) = /'(3) = 0, 
f(x)>0 forx>3and f'(x)<0 forx<0and 0 
<x<3; 

d  fid) =4, (>0 for x > 4, ['(x)<0 
for x < 4, as x> 4%, f(x) >+ and as 

X4, f1(x) > oo 

Find the coordinates and nature of the stationary 

points for the following: 

a y=3+2x—x2 

b y=x2+9x 

c y=x3-27x+9 

d  fix) = B-6x2+8 

e fix) = 3+9%x-3x2-x3 

f y=@-D@a2-4) 

g fix) = x-24x,x20 

h g(x) = x*-8x2+ 16 

i y= (=Dt 1) 

Sketch the following functions: 

a y=5-3x-x2 

b A= x2+%x+% 

c fix) = x3+6x2+9x+4 

d fix) = x3-4x 

Find and describe the nature of all stationary 

points and points of inflection for the function 

flx) = x3+3x2-9x+2. 

  

5. Sketch the graph of x=x*—4x2, 

6. A function fis defined by fix me~*sinx, where 0 <x< 
2m. 

a  Find: i £ /") 

b Find the values of x for which: 

i f'(x) =0 i f"(x) =0. 

c Using parts a and b, find the points of inflection 
and stationary points for f. 

d Hence, sketch the graph of f. 

T A function fis defined by fix me¥sinx, where 0 < x< 
2m. 

a Find: i [l i f"(x). 

b Find the values of x for which: 

i f'x) =0 ii f'(x) = 0. 

€ Using parts a and b, find the points of inflection 

and stationary points for f. 

d Hence, sketch the graph of f. 

Extra questions 

  

Related Rates 

So far we have only dealt with rates of change that involve 

one independent variable. For example, the volume, V units’, 

of a sphere of radius r units is given by ¥ = Zr/3. To find 
the rate of change of the volume with respect to its radius we 
differentiate with respect to r: 

s A A 2 <Ak Le. 37t><3: 4mrs | 

Now consider this sphere being placed in an acid solution so 

that it dissolves in such a way that: 

L it maintains its spherical shape, and 

2 its radius is decreasing at a rate of 1 cm/hr.



  

How can we find the rate at which its volume is changing 
when the sphere’s radius is 2 cm? 

Note that we are looking for the rate of change of volume, that 
is, we want to find “:i_V (not ”;_V as we found previously — 

't r 

when we specifically requested the rate of change with respect 

to r). The difference here is that we want the rate of change of 
one quantity (in this case the volume) which is related to a 

second variable (in this case the radius r) which is itself 

changing. 

Problems of this type are known as related rates problems 
and are usually solved by making use of the chain rule. 

‘We now consider the problem at hand. We have: 

Want: rate of change of volume that is, we want to find dr, 

When: r=2. 

Given: radius is decreasing at a rate of 1 cm/hr, Z—: ==l 

Need: This is the tricky bit. Knowing that we will need to use 
the chain rule, we start by writing down the chain rule with 
the information we have. Then we try to fill in the missing 
pieces. 

This will often lead to what we need. 

dv dr 
Step 1: g de[ 

Step 2:  Ask yourself the following question: 

“What do I need in the missing space to complete the chain 

rule?” 

e . s L dr 
The missing piece of information in this case is 77~ . 

i dv _dv dr .. 1 That is, we have R a which works! 

Step 3: Once you have decided on what you need, then find 

an equation that will enable you to differentiate. 

Some warning! Step 3 is the tough bit in the question. 
Sometimes we are lucky and we know of an equation but 
sometimes we need to somehow ‘create’ the equation. 

In this case we do have an equation; y = ‘3_‘,[ 3 ‘;l/ = 4m2. 
r 

And so, using the chain rule we have ‘Z/ 4mr2 x ‘;—: 

Note: It is very important not to substitute any values until 

the very end. 

G Tl 

The last stej 15 to find & T Vst the specified radius with the 
iven rate, && = _| . 

& a’/ 

That is, % = 4n(2)2x-1 = —16m- 

So, the volume is decreasing at 167 cm*/hr. 

  

From the data, & = 1.2. 
dt 

This is the mathematical formulation of the statement ‘the 
radius of a circular oil patch is increasing at a rate of 1.2 cm 
per minute’ where r is the radius and ¢ is the time (in the units 
given in the question). The radius is increasing and so the 
rate is positive. The next step is to identify the rate of change 

that we have been asked to calculate. In this case, the question 

asks: ‘find the rate at which the surface area of the patch is 
increasing. 

If we define the area as A cn’, the required rate is a8, 
dr 

dA 
So we have: Want: A 

When: r=25 

. dr 
Given: = =12 

 (chain raley 4 ar Need: (chain rule): 0 I @ 

dA4 
‘The missing piece must therefore be 7! 

dd _dd dr Therefore, wehave,g; =@ ar 

‘We need to find an expression for A in terms of r. 

This can be done by looking at the geometry of the 
situation. The oil patch is circular and so the area is given by 

A=m2= - on. 
dr 

Substituting into the chain rule gives: ‘2’: 27X %: 

Then, with =25 and % = 1.2 we have: 

dA S T 2m5)x 1.2 = 60m~ 1885 em?min!. 

That s, the area is increasing at approximately 188.5 cm’min-. 

e e T el e e | 
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Note: A useful check that the chain rule has been used 

appropriately is to use the units of the quantities involved. For 
Example 6.3.14 we have that: 

dd _ gl dr 
dr dr " dt 

which is the correct unit for ‘ZI_': : 

= em?em~! xem!min~! = ecm?min~! 

  

are involved and see if a diagram might 
be helpful - usually one is (even if it’s X 
only used to visualize the situation). In 
this case we are talking about a volume 
and a length, so we let V cm’ denote the ¥ 
volume of the cube of side length x cm, ™ ¥ —] 
giving us the expression V = x*. 

We start by determining what variables —T 

  

      

Next we list all of the information according to our want, 

when, given and need: 

dx 
Want: 

When: V=1,000 

. dav _ 
Given: ar 24 

. (choinruie) % - 22 dx Need: (chain rule) T Ix a7 we need ar 

dx _ dx dV 
Sothat g, — ar”™ ar - 

However, we have V as a function of x and so it will be easier 
to first find 4 and then use the fact that: 

dx dx _ 1 
av - av 

dx’ 
dav dx 1 dv -y Oy e SR, L o Then,as V = x =% 3 =% 3x2xdt’ 

We know ‘ZI—’: = 24 but, still need a value for x. 

From ¥ = x3 we have 1000 = x3.-.x = 10. 

de 1 8 dx _ 4= 3 _o0s. @~ 3002 T 100 
  

That is, the side lengths are increasing at 0.08 cms. 

e O S R PO T | 

It is important to realize that when we reach the ‘Need:’ stage 
there are more ways than one to use the chain rule. 
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For example, with Example 6.3.15, rather than using 

dx _ dx x dV and then realizing that we need to find 4V 
dr dV dt dx 

and then invert it, we could have used the chain rule as 

follows: 

dyv _dV _dx dx 24 dx = ghgax 24 = 325 0 _ 24 so that 3x bt 52 

Using the chain rule in this manner has a certain ‘logical flow’ 
to it, in that everything seems to ‘fit nicely’ But remember, as 
long as the chain rule expression contains the ‘need; ‘want’ 

and ‘given’ it should not make much difference at the end. All 
that we can say is that as you solve more and more of these 
problems you will be able to make the ‘best’ decision available 
at the time. 

    

  

water 
10cm 

re T 

N 50 em 

Figure A fiéure B 

Let the water level at time t min have a height h cm with a 
corresponding radius r cm and volume V cm®. 

‘We now list our requirements: 

dh 
Want: = 

When: h=10 

dv wven: =5 Given: @ 

o dY dh av Need: (chain rule) & .X ave need T 

dv 
Before we can find 7 we will need to find an expression 
for V in terms of h. We do this by making use of Figure B - a 
cross-section of the inverted cone. The information in Figure 

B prompts us to make use of similar triangles. 

50 _h _1 
We then have, 5 = 7 &> r = 3h.



  

The volume of water in the cone when it reaches a height h cm 6. 
is given by: ¥ = %nrzh ¢ 

Then, substituting the expression = 4 into the volume 

equation we have j — 1 (l jz = Esi g dV. _ Tas, qt v 31t 5/1 h 75h idh 25/1 

We can now complete the chain rule: 7. 

qY_dV dh AV nyo dh 
dr dhdid 250 Tdi 

i dh _ 125 
T3 dr dt g2 

dh 125 
‘Then, when h = 10, we have 77/ = Tooz = 0.3978 | 

i.e. approximately 0.4 cms™. 

T e tes s e e 

Exercise 6.3.3 

L. The radius of a circle is increasing at 2 cm/s. Find the 
rate at which: 

a - its area is increasing and b - its circumference is 
increasing. 

2. The side lengths of a square are increasing at a rate of 

3 cm/s. Find the rate at which the area of the square is 

increasing when its side length is 1 cm. 9. 

3. The sides of an equilateral triangle are decreasing at a 
rate of /6 cm/s. Find the rate of change of: 

a - the area of the triangle and b - the altitude of the 
triangle. 10. 

4. A solid 400 g metal cube of side length 10 cm expands 

uniformly when heated. If the length of its sides expand 

at 0.5 cm/hr, find the rate at which, after 5 hours: 

a its volume is increasing. 

b its surface area is increasing. 

c its density is changing. 

5. A drinking glass is shaped in such a way that the 11. 

volume of water in the glass when it reaches a height h 

cmis given by ) = 

  

Water is poured into the glass at 2 cm’s. At what rate 
is the water level rising when the depth of water is 3 

cm? 

APPLICATIONS 

An ice cube, while retaining its shape, is melting and 
its side lengths are decreasing at 0.02 cm/min. Find the 
rate at which the volume is changing when the sides 

are 2 cm. 

A liquid is pumped into an upright cylindrical tank of 

radius 1.5 m at a rate of 0.25 m’s™". 

At what rate is the depth of the liquid increasing when 
it reaches: 

a adepth of 1.25 m? 

b a volume of 101 m*? 

A conical pile of sand with a constant vertical angle of 

90° is having sand poured onto the top. If the height is 

increasing at the rate of 0.5 cm min™', 
find the rate at which sand is being 

poured when the height is 4 cm, 
giving an exact answer. 

  

An aeroplane flies over an airport at an altitude of 
10,000 metres and at a speed of 900 kmh™'. Find the 
rate at which the actual distance from the airport is 

increasing 2 minutes after the aeroplane was directly 

over the airport, correct to the nearest whole number. 

The temperature inside a chemical reaction vessel, 
initially 35°C is rising at 7°C per hour. 

The rate at which the reaction happens is modelled by 

the function: rate = - + 3, where tis the temperature 

of the reaction vessefi'n °C. Find the rate at which the 

reaction is occurring after 5 hours. 

A racing car, travelling at 180 km per hour, is passing 

a television camera on a straight road. The camera 

is 25 metres from the road. If the camera operator 

follows the car, find the rate (in radians per second) 

at which the camera must pan (rotate) at the moment 

when the car is at its closest to the camera. 
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12.  The diagram shows a water trough. Water is being 

poured into this trough at 2.4 cubic metres per minute. 

3m 
> 

Extra questions 

2m 
4m 

2m 
a Find an expression for the volume of water in 

the trough in terms of its depth. 

  

Answers 

b Find the rate at which the water level is rising 

when the depth is 0.5 metres. 

  

e Find the rate at which the exposed surface area 

of the water is increasing after 1 minute. 

13. A square-based pyramid with a fixed height of 20 

metres is increasing in volume at 2 m’min'. Find the 

rate at which the side length of the base is increasing 
when the base has an area of 10 m? Give an exact 

answer with a rational denominator. 

14.  The length of the edge of a regular tetrahedron is 
increasing at 2.5 cms™. Find the rate at which the 

volume is increasing when the edge is 4 cm. 

15. A man 1.8 m tall is walking directly away from a street 

lamp 3.2 m above the ground at a speed of 0.7 m/s. 
How fast is the length of his shadow increasing? 

16. A ladder 10 m long rests against a vertical wall. The 
bottom of the ladder, while maintaining contact with 
the ground, is being pulled away from the wall at 0.8 

m/s. How fast is the top of the ladder sliding down the 
wall, when it is 2 m from the ground? 
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Integration 

Antidifferentiation and the indefinite integral 

A s the name suggests, antidifferentiation is the reverse 
process of differentiation. We are then searching for the 

answer to the following: 

Given an expression f'(x) (i.e. the derivative of the function 
f(x)), what must the original function f(x) have been? 

For example, if f'(x) = 2x then f{x) = x* is a possible expression 

for the original function. Why do we say * ... is a possible 
expression for the original function? 

Consider the following results: 

f) =+ 3, = £1(x) = 2x [1J& fx) = = 5, = f(x) = 2x 2] 

From equations 1 and 2 we see that given an expression f'(x), 
there are a number of possible different original functions, 
fix). This is due to the fact that the derivative of a constant is 

zero and so when we are given an expression for f'(x), there is 

no real way of knowing if there was a constant in the original 
function or what that constant might have been (unless we 

are given some extra information). 

The best that we can do at this stage is to write the following: 

Given that f'(x) = 2x, then f(x) = x*+ ¢, where ¢ is some real 

number that is yet to be determined (it could very well be 

that ¢ =0). 

The antidifferentiation process described above can be 

summarized as follows: 

Given that % = [1(x), then (after antidifferentiating): 

=f{x) + c where ceR 

We say that y = f(x) + c where c€R is the antiderivative 
of f (). 

Language and notation 

The set of all antiderivatives of a function h(x) is called 

the indefinite integral of h(x), and is denoted by 
[a(x)a. 

‘The symbol [ is called the integral sign, the function 
h(x) is the integrand of the integral and x is the variable 

of integration. 

Once we have found an antiderivative (or indefinite integral) 

of h(x), H(x) (say) we can then write: 

s = 1)+, where ce R 

The constant c is called the constant of integration. The 
above result is read as: 

“The antiderivative of 4(x) with respect to xis H(x) + ¢, 

where ceR’ 

or 

“The indefinite integral of /(x) with respect to x is 
H(x) + ¢, where ceR’ 
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Determining the indefinite integral 

So—how do we find the indefinite integral of /(x)? 

‘We approach this problem by searching for a pattern (pretty 
much as we did when dealing with the derivative ofa function). 
Recall the following results (when we were searching for a 
rule to find the derivative of a function): 

  

hx) | x 2 [ 3| A x" 
  

Hx) | 1 2x | 3x2 | 4x3 | Sx* e | =1                     

This suggests the ‘standard form': 

P 
Note that, since we cannot have a zero denominator, n cannot 

be-1. 

‘The case Jx" dx:f%dx will be dealt with later. 

A slightly more general result is one where we have ax” rather 
than simply x”. In this case we have that: 

m 
Jax”dr = (+e)n#-1 

n+l 

  

In each case we use the standard form. That is, we first increase 
the power by one and then divide by the new power. 

  

4 4 g = 2 2414 _ 43, a I4xdx 2+]x c,ceR_3x c,ceR 

b Ix“3dx= L -3+14cceR =-ix24cceR 
-3+1 ’ 2 

=VL+c,ceR 
2x2 

1 > Lyg 
¢ [sihar= 5= 2 vecer 

14 2 

5 
G/2) x32+c,ceR = 13—0 X3 +c,ceR   
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Notice that, before we can start the antidifferentiation process, 

we must express the integrand in the form ax”, i.e. in power 

form. 3 3 3 
J'i/?dx = [ = 25 e 

  

Although we have been working through examples that 
are made up of only one integrand, we can determine the 
indefinite integral of expressions that are made up of several 
terms. 

  

o ek - J.szdx+J.x3dx—J.4dS: 

=2 o+t 1 oann_ 2+Ix +3+1x 4x+c 

=2uili grigcer ER 2 

‘When determining the indefinite integral of 4, we have 
actually thought of ‘4’ as “4x"". 

So that [4d = [4xtar = fix‘“' = 4x. 

b j(x— Dt +3x)d = J‘(xtxhsxhsx)ax 
16 1 3 6 5 3 2 x-S +x3 - 2x+c 
6 5 2 

14_222+3 _ 24 212 3 

[FEe- 55 Y o 

= _[(zl —2+3z)d: 

  

= 123—21—§+C,C€R 
3 z 

Notice that in part b it was necessary to first multiply out the 
brackets before we could integrate. Similarly, for part ¢ we 
had to first carry out the division before integrating.



Exercise 6.4.1 

1. Find the indefinite integral of the following. 

o 

8 

8 b 

x8 e 

9x8 h 

Ide b 

J‘%dx e 

7§dx h 

_[( 1-x)dx 

j(x3 ~9)dx 

G- 
_[x(x +2)dx 

J(x+])(l —x)dx 

7 7 e o 

4x2 f 7x5 

la 

Jpar < Jroar 

Jaac £ [ear 

Jax 

b I(z +x2)dv 

o 
f J'@JF i 8x)dx 

e 
Find the antiderivative of the following. 

a 

c 

Find: 

- 

(x+2)(x-3) 

(x-3)3 

1= +x) 

2 J’x ~3xd‘ 

X 

403+ 502~ 1 
2 

I(X+222d,r 
) 

J'x1+5x+6 
x+2 

x2-6x + 8 
.[ x-2 a 

e 

dx 

  

Extra questions 

du 

b (x2=3x)(x+1) 

d (x+2x3)(x+1) 

f Jx(x+1)2-2 

  

ANTI-DIFFERENTIATION 

  

More Standard Integrals 

In the same way that thereare rules for differentiating functions 
other than those of the form ax", we also have standard rules 
for integrating functions other than the ones that we have 
been dealing with so far. That is, there are standard rules 

for finding the indefinite integral of circular trigonometric 

functions, exponential functions and logarithmic functions. 

We can deduce many such antiderivatives using the result 
Idix(l1(x))dx S K- (1), 

For example, if we consider the derivative %((ez’”) = 2¢2x, 

< d We te [L(e2)dx = [2625dx. ‘e can write Idx(e Ydx IZ@ dx 

d 2xygx = o2t But from (1) we have Jd—x(e Ydx = e2x 

Therefore, Xt = Ilezxdx_ 

Or, we could write: 

Xt = ZIez’dx =3 Iez‘dx = %(ez" +e) = %ez" +e 

Similarly, d%(lnx) = Landso, antidifferentiating both sides 
x 

d = (% we have Jd—x( Inx)dx = J'de. 

d - . _ [l 
Then, as jdx(lnx)dx Inx, we can write, Inx +¢ = dex- 

We summarize these rules in the table below: 

  

  

  

  

  

  

a 
ax”, n#-1 n+1x"*‘+c J'szdx: §x3+c 

n#-1 

i log Jx| +¢,x#0 J‘gdx:GJ'de 
=x#0 x x 
* Orlog(r+c,x>0 = 6log,x+c,x>0 

| Isin(Sx)dx 
sin(kx) fzcos(kx)+r 1 

= —gcos(Sx)+c 

i feor()e @ Hig 
cos(kx) ;sm(kx) +c 1 

= 4sin(5)+ c 1 

1 
sec?(kx) ;13‘1(/(1) +e Jsecz(Zx)dx=%lan(2x)+c 

ohr iebwc J‘e”hdx = —%e"h«tc           
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()
 

NB: In the previous table (and from here on), the constant c is 

assumed to be a real number. 

General power rule 

The indefinite integral of f(ax +b) : 

lfjf(x)dx —F(x)+c, rhaujf(ax +byde= ‘]—IF(ax +h)+e. 

This means that all of the integrals in the table can be 
generalized further. 

In particular we consider the generalized power rules: 

a This question requires the use of the result: 

Fow L Jrar s byas = ——rstax < 0" el 

1 it = 441 et TR e 

= %(3x+7)5+c 

b J’}(4721)5dx = 3](4;2;)% 

1 

B ETE) (4-2x)3"1+e 

=2 a0 —2><6(4 2x)%+c¢ 

= —%(4—2x)6+c 

¢ J~/5x+ldx :I(5x+\)'/2dx 

(Note: we must first convert into power form!) 

1 241 
L _(sx+1)? e 
i 5 [-H) *(z 

3 

2 3 ]5(5,\:+1) +c 

  2 = —3)2 d J'(zks)zdx 4I<2x 3)2dx 
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1 

  

= — —3)-2+1 . T e 

=-2x(2x-3)""+¢ 

0 
T 

  

a jsin4xdt = —% cosdx +c¢ 

[mxng Jslanul\ - Al“““"" - l 

1 .1 . (l = = gin[ix)4e= )4 b Jcos[zx)dx sm(zxj ¢ = 2sin ZX) c 

@) 
[l\smg Jmm Jely = %slnlk\l - L] 

c J’secz(3x)dx = %tan(}x) +e 

[l‘sing jseclmm\ Lan(ke) + | 

We can extend the results for the antiderivatives of circular 

trigonometric functions as follows: 

sin(ax+b) —icos(ax+b)+c 

  

cos(ax+b) Ll'sin(ax+b)+c 

  

sec2(ax + b) latan(ux+b)+c         
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o ferdr = %22"+c. (using fekva - 

b [setvar = sje-wx 

=5 Xflze‘3‘+c 

- _gfz;urc 

(Using Imn = Alw +e) 

J[4x - 25’]{1:: = I4xdx -2 J' e?l*’dx 

= 4xlx2v2x:—e§x+c 

a 

2 

i 3 

= 2263 +¢ 

d J'§dx - SJldr = SIn(x)+c,x>0 X 3 
  ®   2 - 1 _2 L .[3x+ v = 2I3X+Idx InGxr D+ ex>-d 

  
  

L[ e =Liog (arv+ b)+e e Ty ] 

As we have done for the circular trigonometric functions, we 
can extend the antiderivative of the exponential function to: 

a Wehaven=6,a=4andb=-1, 

.~.jz<4x- 1)dx = fimh 16+ 1+ c 

= Le-n7ee 

b This time we use the case for n = -1, with a = -3 and 
b =4, giving: 

J‘fidx = 7Ifi;dx = —%loge(4- $x) e, x <‘5‘ 

  

c We first rewrite the indefinite integral in power form: 
1 

3 2 
dy = [3(2x+1) “dx [ it 

Sethata:Z,b:landrI:—%. 

  

Therefore we have that: 
1 

  3 3 de = [32x+1) 2de 
J‘A/2x+'1 [psen » 

=3 ppary? s 
2(_l+| 3 

=32x+1+c¢c 

d -"efzxfldx:_%fz“sn 

1 

e [t ynThe - J'([‘H (3x+2)5}dx 
6 

- et L6(3x+2)5 +e 

5 
=- %e“x+ %5«/(3x+2)6+ c 

0 Joos(Be) g = Loin( B Bincor syve 
2 

2. (% 1 = Zgin[ x| = +5)+ nsm(zx) 3In(6x 5)+c 

[frvas=a Sl o AL SLEL LT O S ) 

Exercise 6.4.2 

1. Find the indefinite integral of: 

a 5% b &3 ciex 

d-ebls e e f 4e 

g 0.1e705¢ h 2el-¥ i Sext! 

j —2e2-2¢ k 331’ 1 et 
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Find the indefinite integral of: 

a % b --g 

= & 4 g 
¢ x o (- 
s (g v & 
Find the indefinite integral of: 

a sin(3x) b cos(2x) 

c sec?(5x) d sin(—x) 

Find the indefinite integral of: 

a sin(2x) +x b 6x2 — cos(4x) 

L o senean(l) 

e oos(})-sinGy o erdog 
g (@ +1)? 

: -1 = 4x)+ X2 h Ssin(4x) = 

1 
i sec2(3x]—g+ezr 

x 

= X -x2 j (€ —e™) k Q2x+3 

1 sin(2x + 1) m 

sin(lx+ E) n 3 o 

  

Using the general power rule, find the indefinite 
integral of: 

  

a (4x—1)3 b (3x+5)6 

¢ e-w a  x3p 

8 1 2 2 e (1-31) £ (Ex— ] 

g (5x+2)~6 h (9—4x)2 

) - . i i (x+3)73 j i 

2 4 
L res ) o 

=3 9 
== n 3-6x 

  

6. Find the antiderivative of: 

a sin(2x—3) - 2x 

b 3(105(24—%){)#—5 

¢ lenfr-b)g2 
2 3 2x+1 

d sec2(0.1x—-5)-2 

  

  

  

    

    

4 “Lea 

e n+s O 
4 

f (2x+3)? 
x+2 4 

8 F1 2 
2x+1 1 

h x+2 +2.r+] 

; 2,2 
x+1)2 2x+1 

7 Find f(x) given that: 

a SO) = JAXES here fi-1) = é 

b f(x) =   4{8_3 where f(1) = 2. 

c f(x) = cos(2x+3) where_/(nféj =1 

d f(x) = 2—e 2" where f(0) = e 

8. A bacteria population, N thousand, has a growth rate 

modelled by the equation: 

dN _ _4000 
dt 140570 
  t=20 

where t is measured in days. Initially there are 250 
bacteria in the population. 

Find the population size after 10 days. 

Extra questions 

Answers  
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¢ P'ajage from the Brazils to the Capé of 

Good Hope ; with an Account of the Tran/- 

6.5 Definite Integration 

  

September 1787. 

OUR paflage from Rio de Janeiro to 

the Cape of Good Hope, was equally 

Boundary Conditions 

Out cover picture is from a book printed in 1789. Note the 

elongated 's's in the word ‘passage’. These were common 
in both handwriting and printing at the time. The integral 
sign - - was chosen as an 'S' for ‘summation’. The reason for 
this is part of the subject of this section. 

Although we have already 

discussed the reason for adding 
a constant, ¢, when finding the 
indefinite integral, it is important 
that we can also determine the 
value of . 

‘We show the family of curves 
resulting from: 

v 2 ——=2x= y=x"+c 2 ¥ 

To determine which of these curves is the one that we actually 
require, we must be provided with some extra information. In 
this case we would need to be given the coordinates of a point 
on the curve. 

  

As f'(x) = 2x = f(x) = x2+c. 

Using the fact thatat x =2,y =9, or that f(2) = 9, we have 
9=224cee=5. 

  

profperous with that which had preceded 

Therefore, of all possible solutions of the form y = x2 + ¢, the 
function satisfying the given information is fix) = x>+5 . 

  

lf:{:ln)n_thse given information we have that /(1) =2 and 

As f"(x) = 6x-2 we have /'(x) = 3x2-2x+¢; — (1) 

But, /'(1) = 2 22 = 3(1)2-2(D) +e¢y ey = 1 
(i.e. substituting into (1)) 

Therefore, we have /'(x) = 3x2-2x+1, 

Next, from /'(x) = 3x2~2x+ 1 we have: 

fix) = x¥-x2+x+c, -(2) 

But, /(1) =5 =5 = (1= (1)2+ (1) +cy ¢, = 4 

(i.e. substituting into (2)) 

Therefore, f(x) = x3—x2+x+4 

T Y W S S S 

Sometimes, information is not given in the form of a set of 
coordinates. Information can also be ‘hidden’ in the context 

of the problem. 
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Antidifferentiating both sides with respect to x, we have 

J'p'<x)dx - J0.0szdx' 

~p(x) = 00163 +¢ — (1) 

Atx =0, p = 10. Substituting into (1) we have: 

10 = 0.01(0)3 +cc = 10 

Therefore, the equation for the pressure at a depth of x cm is 
p(x) = 0.01x3+10. 

Atx =5, wehave p(5) = 0.01(5)3+10 = 11.25. That is, the 
pressure is 11.25 units. 

Exercise 6.5.1 

1. 
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Find the equation of the function in each of the 
following. 

a f'(x) = 2x+1, given that the curve passes 

through (1, 5). 

b () =2-x2and A2) =;. 

c % = 4Jx-x, given that the curve passes 

through (4, 0). 

d /'(x)=x—lz+2, and (1) = 2 
X 

e % = 3(x+2)2, given that the curve passes 

through (0, 8). 

f gf =r+adel, given that the curve passes 

through (1, 2). 

8 S1(x) = (x+ D) (x=1)+1, and f(0) = 1 

h S'(x) = 4x3-3x242, and fi-1) = 3 

Find the equation of the function f(x) given that 
it passes through the point (-1,2) and is such that 

£'(x) = ax+ =, where f(1) = 4 and £(1) = 0. 
X 

10. 

Extra questions 

‘The marginal cost for producing x units of a product 
is modelled by the equation C'(x) = 30—0.06x. The 

cost per unit is $40. How much will it cost to produce 

150 units? 

gl _ g - = Ifdr =6 rz,andA 4whenr =1 

find A when r=2. 

‘The rate, in ¢m>/sec, at which the volume of a sphere 
is  increasing is given by the relation 
dav 9 — #* <1<10. i 4m(2t+1)%,0<¢<10 

If initially the volume is T cm?, find the volume of the 
sphere when t = 2. 

The rate of change of the number of deer, N, in a 

controlled experiment, is modelled by the equation 
“[’1—’;' =3B +21,0<1<5. 

There are initially 200 deer in the experiment. How 
many deer will there be at the end of the experiment? 

If % o Jx» find an expression for y, given that y = 4 

when x=1and y=9 whenx=4. 

A function with gradient defined by % =d4x—m at 

any point P on its curve passes through the point (2, 

-6) with a gradient of 4. Find the coordinates of its 

turning point. 

The marginal revenue is  given by 
dr %= 25-10x+x2,x>0, where R is the total 

x 

revenue and x is the number of units demanded. 

Find the equation for the price per unit, P(x). 

‘The rate of growth of a culture of bacteria is modelled 
by the equation 200¢!01, 7> 0, thours after the culture 
begins to grow. Find the number of bacteria present 
in the culture at time t hours if initially there were 

500 bacteria. 
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Why the definite integral? 

Unlike the previous section where the indefinite integral of 
an expression resulted in a new expression, when finding the 
definite integral we produce a numerical value. 

Definite integrals are important because they can be used to 

find different types of measures, for example, areas, volumes, 
lengths and so on. It is, in essence, an extension of the work 

we have done in the previous sections. 

Language and notation 

If the function f(x) is continuous at every point on the 
interval [a,b] and F(x) is any antiderivative of f(x) on [a,b], 

then: 
b 

I/(x)afit is called the definite integral and is equal to 

a 
F(b) - F(a). 

That is, 

  

Which is read as: 

“the integral of f(x) with respect to x from a to b is equal 
to F(b) - F(a).” 

Usually we have an intermediate step to aid in the evaluation 
of the definite integral. This provides a somewhat ‘compact 
recipe’ for the evba.luation process. This intermediate step is 
written as [F(x)],,. 

‘We therefore write 

‘The process is carried out in four steps: 

  

1. Find an indefinite integral of /(x), F(x) (say). 

2. Write your result as [F{( (x)]fi . 

3. Substitute a and b into F(x). 

4. Subtract: F(b) - F(a) to obtain the numerical value. 

Notice that the constant of integration ¢ is omitted. This is 
because it would cancel itself out upon carrying out the 
subtraction: (F(b) +¢) - (F(a) +¢) = F(b)~F(a). 

5 
In the expression I Sf(x)dx, x is called the variable of 

integration, and a and b are called the lower limit and upper 
limit respectively. It should also be noted that there is no 

reason why the number b need be greater than the number a 
when finding the definite integral. 

2 
That s, it is just as reasonable to write I f(x)dr asitis to 

5 

write —I f(x)dx , both expressions are valid. 

  

5 

1 s s g _[;dx = [log,x1} = log,5log,3 = log{§)=0.511 
3 

g 
b i'(fi)lfdx = ;‘(x2+2+é)dx = E’J”"fl: 

= (@22 -1)- (507 +20-4) 

(grs-y-ord 387373742 

fi( ~2292) 

;ev +3log (x+ 1)] -z 
(28 +3log,2 ) (§e°+ 3logelj 
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n 
2 

sin3xdx = [—%cosSx]n = —%[cos3x] 

6 

=2 

N= J' N(ryr . 

o1
 

% 

o =1 Yol () z 
=0 

o 

ou
E 
i
 

  

2 
2 1 

N [ [fi“’“‘”s]s - @' -an) 
5 161019 ) - 1890 o6 8 

i 0 3 
f —eN)dr = |x2 e J'(x e™) [2 e lz 

-2 — 0+ —G(—z)l + ei) 

= 1-e2~-839 Exercise 6.5.2 

1. Evalua&e the following. 

  

   

2 
Thatis, N = I(— 202+ 8¢+ 10)dr = [7gr3+412+101:| 

1 

= (- Zop+ar+ 10(2))4(—.%(1)3 a2+ 10(1)) 

9 
[ = e T e s or SN ] 

a J.de b J’J;Ca% 

1 4 

3 9 

2 4 
c Sdx d —dx I3 F 

2 16 

Differentiating we have, %(exz *3) = 2xe+3, 2. Evaluate the following definite integrals (giving exact 
answers). 

1 1 1 
B3 g D 243 = 3[4 43 ‘Therefore, J.Sxe" dx ZIer" dx 2_[3(2" Jakx J'(xl = i)dx 

0 0 g ! # 
= Jre g = Jet-en) 

Notice that in this case we made use of the fact that if c I(l +2x—3x%)dx 
£1x) = () then [etx)dr = fix) +e. ) 

- 

& Ix3 (x+ v 

0 

4 
g [eheDia 

1 

  

3 2 

i J’("—’x +x)dx 
X 

The second hour starts at ¢ = 1 and ends at t = 2. Therefore, 
the number of radios assembled by the average worker in the 

o %41 
second hour of production is given by: k j—d" 

X 

2 

b J‘(xfi —x)dx 

0 

0 

d j(x+1)dx 
-2 

1 

£ I(x+l)(x2—1)dx 

-1



Use a graphics calculator to check your answers to 

Question 2. 

Evaluate the following definite integrals (giving exact 

values). 
2 

! 4 a _[D(en s b l;dx 

1 1 

& '|' (e¥ - e)dx d J (e* +e)dx 
-1 -1 

1 0 

e Jerea g 
-1 2 

1 

g J‘(A/;—l)dx h 
0 

-1 

i jel -~ 2%y 

1 

Use a graphics calculator to check your answers to 

Question 4. 

Evaluate the following definite integrals (giving exact 
values). 

2 

  

4 

a J‘%d\' b J.xi_fix 

| 0 

6 5 

¢ j’%‘dx d j(xz + %)de 
2 4 

0 1 5 

e [rine £ [ 
O 0 

Use a graphics calculator to check your answers to 
Question 6. 

Evaluate the following definite integrals (giving exact 
values). 

0 f ol n 

Si
a 

a J sin(2x)dx b 

o 

11. 

12. 

Extra questions 

DEFINITE INTEGRATIO 

  

sec?4xdx d o (cos.\’ = sin(g)]dx 

NH
 

im
 

o 
e
 

=n 

Evaluate the following definite integrals (giving exact 

values). 

1 

a I(;fl)“dv b J)A/z.wl(u 
0 1 

1 
3 1 ¢ J] (1-20%a  d d 

- '[o(x+2)} 
  

2x+6 1 1 —EXD o O g o Show that Freers orl ol 

2 

Hence evaluate J‘——Z—Al 
x2+6x+5 

0 

e din - o 
Find E((xsmlx). . 

Hence find the exact value of |xcos2xdx . 

0 

b b 

Given that J/(x)dx = m and Ig(x)dx = n, find: 

b b b 

a [afnds- [t b [~ D 
a a a 
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Areas 

In Chapter 6.3 we saw that differentiation had a geometric 

meaning, that is, it provided a measure of the gradient of the 
curve at a particular point. We have also seen applications 

of the definite integral throughout the previous sections in 

this chapter. In this section we will investigate the geometric 

significance of the integral. 

Introduction to the area beneath a curve 

Consider the problem of finding the exact value of the red 

shaded area, A sq. units, in the diagram shown. 

  

= x 

As a first step we make use of rectangular strips as shown 

below to obtain an approximation of the shaded area. We can 
set up a table of values, use it to find the area of each strip and 

then sum these areas. 

In the figure, the green rectangles lie below the curve, and 

so we call these the lower rectangles. In the figure, magenta 

rectangles lie above the curve, and so we call these the upper 

rectangles. The red figure above shows that the true area (or 

exact area) lies somewhere between the sum of the areas of 

the lower rectangles, S, and the sum of the areas of the upper 

rectangles, S, 

Lower rectangles, Upper rectangles, S, 

yl= 2 v V= 

  

That is, we have that: 

Lower Sum =S, < Exact Area, A <, = Upper Sum 

366 

In the case above we have that §, = 1x1 + 1x4 =5 

and S;= Ix1 + 1x4 + 1x9 = 14. 

Therefore, we can write 5<A4<14. However, this does 

seem to be a poor approximation as there is a difference of 
9 sq. units between the lower approximation and the upper 

approximation. The problem lies in the fact that we have only 

used two rectangles for the lower sum and three rectangles 
for the upper sum. We can improve on our approximation by 

increasing the number of rectangles that are used. For example, 

we could used 5 lower rectangles and 6 upper rectangles, or 10 

lower rectangles and 12 upper rectangles and so on. 

In search of a better approximation 

As shown in the diagrams below, as we increase the number 

of rectangular strips (or decrease the width of each strip) we 

obtain better approximations to the exact value of the area. 

5 lower & 6 upper 
rectangles 

11 lower & 12 upper 
rectangles 

¥ 

  

For intervals of width 0.5 we have: 

S, = Ix[025+1+225+4+625] = 6.875 3 
Sy = FX[025+1+42.25+4+625+9] = 11375 

So: 6.875 < True area < 11.375 

For intervals of width 0.25 we have: 

S, = J—‘x [025+0.5625 + 1 +1.5625 + 2.25 + ... +7.5625] 

=7.89 

% [0.0625+ 0.25 + 0.5625 + ... + 7.5625 + 9] = 10.16 

Bi
— Sy = 

So: 7.56 < True area < 10.16 

By continuing in this manner, the value of A will become 
sandwiched between a lower value and an upper value. Of 

course the more intervals we have the ‘tighter’ the sandwich 
will be! What we can say is that if we partition the interval 

[0,3] into n equal subintervals, then, as the number of
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rectangles increases, S, increases towards the exact value A 

while S, decreases towards the exact value A. 

o« 
As we have seen, even for a simple case such as y = x2, this 

process is rather tedious. And as yet, we still have not found 
the exact area of the shaded region under the curve y = »2 
over the interval [0,3]. 

Towards an exact area 

We can produce an algebraic expression to determine the 

exact area enclosed by a curve. We shall also find that the 

definite integral plays a large part in determining the area 

enclosed by a curve. 

As a starting point we consider a single rectangular strip. 

Consider the function y = f{x) asshown: 

  

Divide the interval from x = a to x = b into n equal parts: 
a = XX XX, = b 

This means that each strip is of width b%’ ¥ 

b-a ‘We denote this width by 8x so that 8x = = 

The area of the lower rectangle is f{x) x 8x and that of the 
upper rectangle is f(x + 8x) x 8x. 

Then, the sum of the areas of the lower rectangles for a<x<bis 
b-dx 

S, = 2 flx)dx 

x=a 

and the sum of the areas of the upper rectangles for a<x<b is 
b 

Sy = Zj(x+5x)8x 

x=a 

Then, if A sq units is the area under the curve y = f(x) over 

the interval [a, b] we have that: 

  

As the number of strips increases, that is, as #— e and 
therefore 8x — 0 the area, A sq units, approaches a common 

limit, i.e. S from below, and S, from above. We write this 

o - 

In fact this result leads to the use of the integral sign as a 

means whereby we can find the required area. 
b b 

That is, B)IKT Oxgaf(.r)&v = !f(x)dx 

Notice that we've only developed an appropriate notation and 
a ‘recognition’ that the definite integral provides a numerical 
value whose geometrical interpretation is connected to the 

area enclosed by a curve, the x-axis and the lines x = a and x 
= b. We leave out a formal proof of this result in preference 
to having developed an intuitive idea behind the concept and 

relationship between area and the definite integral. 

‘We can now combine our results of the definite integral 

with its geometrical significance in relation to curves on a 
Cartesian set of axes. 

The definite integral and areas 

  

If y = flx) is positive and continuous on the interval 

[a,b], the area, A sq units, bounded by y = f(x), the 

x-axis and the lines x = a and x = b is given by 

Area=4 = }j(x)dx = j”ydx 

a a 

  367



  

= (30-9)—(720%)) 

115 
Therefore, the shaded area measures 3~ 

T e e e e e ) 

Most calculators will produce numeric solutions to these area 

problems. Make sure you are familiar with the capabilities of 
your model. 

Ty £1(0)=x2+1 

square units. 

    
    

  

= 
0.   3 

The analytic solution is: Area :J(.r2 +1)dx 
1 

£ T 
=[=+x 

[ 3 ]I 

3 3 
S (A N 

3 3 

—9+3-1y 
3 

=102 
3 

  

0 

Area = J' (4—e 05 dx = k-2¢ 
-2 
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[4x+2¢954", = k-2¢ 
2-(-8+2e') = k2e 

10-2¢ = k-2¢ 

Therefore, k = 10. 

  

Further observations about areas 

To find the area bounded by 

» = fix), the y-axis and the 
lines y=aand y = b we carry 
out the following process: 

First you need to make x the 
subject, ie. from ¥ = flx) 
obtain the new equation 

x=g). 

  

Then find the definite integral, fxdy = J‘bg(y)dy sq units, 

which will give the red area. a “ 

If fis negative over the interval [a,b] (i.e f{x) <0 for asx<b, 

thgn the integral: 

J.f(x)afir is a negative ¥ 4 

a    
number. 

We therefore need to write 

lhbe area, A, as: 

—Iflx)d’f or, use the absolute value of the integral: 

a 
b 

4= _[f(x)dx 
a 
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We need an expression for x in terms of y: 

Thatis, y = Jx=y? = x, x>0 

‘Therefore, the area of the shaded region is: 

3 
| xay = Zd,:[.ll] _ligs g3y 226 A fltdy J)Iy fy 3_v] 3(3 13) 3 

2 
The required area is ?6 5q units. 

The Signed Area 

It is possible for y = f(x) to alternate between negative and 
positive values over the interval x = a and x = b. That is, there 
is at least one point x = ¢ where the graph crosses the x-axis, 

andso y = f{x) changes sign when it crosses the point x = c. 

  

‘The integral r flx)dx gives the algebraic sum of 4, 
a 

and 4, , that is, it gives the signed area. 

For example, if 4, =12 and 4, =4, then the 

definite integral flx)dy =12-4=38. 
a 

This is because fj'(x)dx =12, f_[(x)dx =-4and so 
a ¢ 

.rf(x)dx = -r/i'.\')dr # J{/(x)dx =12+(-4)=8 
a 

As fflx)dx is a negative value, finding the negative of 
¢ 

f_r’(x)dx , that is [*jbf(x )dx] , would provide a positive value 
. < 

and therefore be a measure of the area of the region that is 
shaded below the x-axis. The red area would then be given by: 

r/IX)dx + [, _/KX)dXJ 

This would provide the sum of two positive numbers. 

Steps for finding areas 

It follows, that in order to find the area bounded by the curve 

v = flx) , the x-axis and the lines x = a and x = b, we first 
need to find where (and if) the curve crosses the x-axis at 

some point x = ¢ in the interval a<x<b. If it does, we must 

evaluate the area of the regions above and below the x-axis 

separately. 

Otherwise, evaluating Jj f(x)dx will provide the signed area 
a 

(which only gives the correct area if the function lies above 
the x-axis over the interval a<x<b). 

Therefore, we need to: 

1. Sketch the graph of the curve y = f(x) over the 
interval a<x<b. (In doing so you will also determine 

any x-intercepts). 

2 Integrate y = f{x) over each region separately (if 

necessary). That is, regions above the x-axis and 

regions below the x-axis. 

3. Add the required (positive terms). 

  

First sketch the graph of the given curve: 

x-intercepts (when y = 0): B-l1=0x=1 

  

y-intercepts (when x=0): y=0-1 

From the graph we see that y is negative in the region [0,1] 

and positive in the region [1,2], therefore the area of the 

region enclosed is given by: 

A= {-J'l(xh 1 )dx}+r‘(x3— 1)dx 

()5 

(@) 
=35 

That is, the area measures 3.5 sq units. 
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2 

Noncetha:f(x3—!)zix = =203, 
0 

First sketch the graph of the given curve: 

1.1 

7.23 
l‘l(x)-xa-s-xzfl-x 

  

[°%.y ' 
x-intercepts (when y = 0): 

        
3-3x242x = 0@ x(x—2)(x—1) = 0-x = 0,2, 1 

y-intercepts (when x=10): y=0-0+0=0. 

From the diagram we have, Area= A4 —A,+4;. 

B
 

1 4 1 

4, = J' (3—3x2+2x)de = I:?—x3+x2:l 
0 0 

4 2 1 
4y = r(x3—3x2+2x)dx = ["—713”2} =1 

S 4 4 
4 39 

4 =J)(13-3x2+2xdx:[x——13+x2} =2 
2, ) 4 h 4 

) 1 N.,.9 11 o ol ad | 2o Therefore, the required area is 7 ( 4) 3~ 7 squnits. 

TR e v e e ) 

Area between two curves 

‘The use of the definite integral in finding the area of a region 
enclosed by a single curve can be extended to finding the 
area enclosed between two curves. Although we do have a 

compact formula to find such areas, in reality it is a known 

geometrical observation. 
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Consider two continuous functions, f{x) and g(x) on some 

interval [a,b], such that over this interval, g(x)2>/(x). The 

area of the region enclosed by these two curves and the lines 
x=aand x = b is shown next. 

v ¥ = Ax) 

  

     
x%=4 x=b x x=a x=bh x 

Area between the curves = 

Area beneath y = g (x) = Area beneath y = f (x) 

That is, 

If g(x) = fix) on the interval [a,b], then the area, A square 

units, enclosed by the two curves and the lines x=a and x=b 
is given by: 

  

The first step is to sketch both graphs so that it is 
clear which one lies above the other. 

  
     



DerINITE | 

  

In this case, as g(x) 2/(x) on [-1,1], we can write 

the required area, A sq units, as 

. g 
J ((x+2)— (2 +x—2))dx =J' (4—2)dx 
L 8 

- [4)[7%3]11 

(-(od 
%2 5q units 

  

Note: If the question had been stated as: 

“Find the area enclosed by the curves g(x) = x+2 and 

f(x) = x2+x-27 it would indicate that we want the total 

area enclosed by the two curves, as shown: 

  

  

      

To find such an area we need first find the points of 
intersection: x+2 = x2+x-2¢ 2 -4 = 0 X = £2 

2 
Area=J] (4-x2)dy = [4){_*_3] _32 $q. units. 

:, 31,3 

  

Again we first sketch both graphs so that we can see which 
one lies above the other: 

  
Next, we find the points of intersection: 

4ox - Ze@-0E-D =2 SGE-3E-2=0 

Therefore, x=3 or x = 2. 

Required area = fz((fi -x)— fi)dx 

= [4)(7"72 ~2log (x - 1)]: 

= % —2log 2 sq units 

et el —ian T ey N 

Exercise 6.5.3 

1 Find the area of the region bounded by: 

a » = x%, the x-axis, and the line x = 2. 

b » = 4—x2, and the x-axis. 

c v = x3—4x, the x-axis, and the lines x = -2 

and x = 0. 

d v = x3—4x, the x-axis, the line x = 2 and the 

line x = 4. 

e v = Jx—x, the x-axis, and the lines x = 0 and 

x=1 

2 Find the area of the region bounded by: 

a flx) = e*+ 1, the x-axis, and the lines x = 0 
andx=1. 

b flx) = e2¥—1, the x-axis, the line x = 1 and the 
line x =2. 

c fix) = e¥—e™, the x-axis, the line x = -1 and 
the line x = 1. 

Lot 
d y=¢2  —x,thex-axis, the line x=0and the 

line x =2. 

3. Find the area of the region bounded by: 

a = i , the x-axis, the line x = 4 and the line 

x=5. 

b y= % , the x-axis, the line x = 0 and the line 

x=4. 
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the x-axis, the line x = -1 and the 

  

linex=1. 

d ftx) +1, the x-axis, the line x = -1 and 

  

3 1 
the line x = 3 

Find the area of the region bounded by: 

a fix) = 2sinx, the x-axis, the line x = 0 and the 

linex="12. 
2 

b ¥ = cos(2x) + |, the x-axis, the line x = 0 and 

the line x = % i 

  

& ¥ = x-cos 

I
 %], the x-axis, the line x = g and 

the line x = 7. 

x d f) = cos(2x) - sin(2 ), the x-axis, the line x 

= 15[ and the line x = 7. 

2 T 
e y = 3sec GJ, the x-axis, the line x = -3 and 

thelinex=12. 
3 

Verify your answers to Questions 1-4, using a graphics 

calculator. 

Find the area of the region enclosed by the curve 

» = 8—x3, the y-axis and the x-axis. 

Find the area of the region enclosed by the curve 
y=x2+1,and thelinesy=2and y=4. 

Find the area of the region enclosed by the curve 

flx) = x+ =, the x-axis and the lines x = -2 and 
x 

x=-L 

Find the area of the region enclosed by the curve 

v = x2—1, the x-axis, the line x = 0 and x = 2. 

Find the area of the region enclosed by the curve 
y = x(x+1)(x~-2) and the x-axis. 

Find the area of the region enclosed by the curve 

fir) = 1-% 
* 

a the x-axis, the line x = 1 and x = 2. 

b the x-axis, the line x = % and x=2. 

12. 

13. 

14.a 

17. 

Extra questions 

  

1 
c andthelinesy:—%andy:i_ 

  The area of the region enclosed by the curve y? = dax 
and the line x=a is ka® sq units. Find the value of k. 

Differentiate the function y = log (cos2x). Hence 
find the area of the region enclosed by the curve 
fix) = tan(2x), the x-axis and the lines x = 0 and 

x= g . 

Find the area of the region enclosed by the curve 
= [2x— 1|, the x-axis, the line x = -1 and the line 

x=2. 

Find the area of the region enclosed by the curve 

v = |2x| - 1, the x-axis, the line x = -1 and the line x 

=2. 

Find the area of the region enclosed by the curve 

¥) = —2 flx) G2 

a the x-axis, the lines x = 2 and x = 3, 

b the y-axis, the lines y = 2 and y = 8. 

Differentiate the function y = xlog,x, hence find 
log xdx. 

a Find the area of the region enclosed by the curve 

y = e, the y-axis and the lines y = 1 and y = e. 

b Find the area of the region bounded by the 
graphs of ¥ = %2 and ¥ =¥, over the 
interval 0<x<2. 

a Find the area of the region bounded by the graphs of 

y=2-x%andy = x, over the interval 0<x<lI. 

b Find the area of the region bounded by the 
graphsof y = 2-x% and y = x. 

a Find thearea of the regions bounded by the following: 

i y=xx=1Lx=2andy=0. 

ii y=x3,y=1,y=8andx=0. 

b How could you deduce part ii from part i? 

 



  

Volumes of Revolution 

A solid of revolution is formed by revolving a plane region 
about a line - called the axis of revolution. In this section we 
will only be using the x-axis or the y-axis. 

   

    
Axis of revolution 

Plane region 

Cone 

For example, in the diagram above, if we revolve the triangular 
plane region about the vertical axis as shown, we obtain a 

cone. 

It is important to realize that depending on the axis of 

revolution, we can obtain very different shapes. For example, 

ifa region bounded by the curve » = % x 2 0 is rotated about 

the x- and y- axes, two distinct solid shapes are formed: 

  

Rotation about 
the x-axis 

    

Rotation about 
the y-axis 

‘When the plane region (enclosed by the curve and the x-axis) 

is rotated about the x-axis, the solid object produced is rather 
like the bell of a trumpet (with a very narrow mouth piece!) 
or a Malay hat on its side. However, when the plane region 

(enclosed by the curve and the y-axis) is rotated about the 

y-axis, then the solid produced is like a bowl. 

Using the same approach as that used when finding the area 
of a region enclosed by a curve, the x-axis and the lines x = a 

and x = b we have: 

DEFINITE INTEGRATIO 

     radius = r = fix) 

Z 2.
 s g -
 

SV =mrdxdx 
But, r = fix) 

OV =m[fx)]28x 

Width = dx 

Then, the volume, V units’, of such a solid can be cut up into 

a large number of slices (i.e. discs) each having a width 8x 

and radius fx). The volume produced is then the sum of the 
volumes of these discs, i.e. 

! 2 b-a 
V= 2 zr[f(;r,)] Sx where Sx=—— 

= ”n 

So,as 7—0,6x—0 and so, 

Ve i Al or= [ al s ar 
Sr—0 

Therefore, we have: 

The volume, V units’, of a solid of revolution is given by: 

L when a plane region enclosed by the curve » = f(x) 
and the lines x = a and x = b is revolved about the 
X-axis. 

x=a 

x=b b 

v=n j [A0) 2dx |:orV=1r yldx] 

2 when a plane region enclosed by the curve y = f(x) 
and thelines y = eand y = fis revolved about the y-axis. 

y=f 1 

ven [ 0P | orv=nfed 
y=e e 
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The curve has a restricted domain and is rotated about the 

x-axis, 5o, the solid formed ?as a volume given by: 

y = nf(m)zdx - nJ (x—Ddx 
1 1 

I 
I 

= 
a 

< 
= 

1%
 

SI
% 

| 
| 

"o 
—
 
T
 | 

-
 

=
0
 

= 8n 

Therefore, the volume generated is 87 units’. 

If the curve is rotated about the y-axis, the solid formed looks 

like this: 

y 

  

a
f
—
 

— 
— 

ofs ' 
The volume can now be found using the second formula. It 
is important to realize that the integral limits are in terms of 
the y variable and so are 0 and 2. Also, x must be made the 

subject of the rule for the curve: 

y=-I=pr=x-1=x=)2+1 

When x=1,y=0and when x =5, y = 2, entering these values 
into the formula gives: 

) 
V= nf(y2+ 1)%dy = nf 04+ 292+ Ddy= 

0 0 

5 3 2 
L+2J’_+} 

"[5 3 Yy 

:,[(Zjflz_%fl) 
5 3 

I 11 
IJEn 

i.e. required volume is 13% T units’® 
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‘We start by drawing a diagram of this situation. It is a bead. 

    

The solid formed is hollow inside, i.e. from -3 < y < 3. 

Next, we find the difference between the two volumes 

generated (a little bit like finding the area between two 
curves): 

4 4 

V= Vg Ve = 7 [ U0Pdr-n [ g0 2 
4 4 -4 

[ (0P~ gy 
S 

I 

4 

Zflj([/tx)lz ~[g(x)]1})dx (by symmetry) 
0 
i 

= 2nj([~/25 2P - [3P)dx 
0 . 

= 2n[(16-x7)dx 
0 

= 1l Zn[mx 3 

  

; N 256 .. 
i.e. required volume is =T units®



  

Exercise 6.5.4 

Finding volumes of revolution is an application of definite 
integration. Your only restriction will be the limitations on 

your ability to find integrals. 

In the following exercise, you will need to draw on all the 

techniques you have learned in the preceding sections. 

* Unless stated otherwise, all answers should be given as 
an exact value. 

1. The part of theline y = x+ 1 betweenx=0andx=3 

is rotated about the x-axis. Find the volume of this 

solid of revolution. 

2 A curve is defined by v = %,XE [1. 5], If this curve 
x 

is rotated about the x-axis, find the volume of the solid 

of revolution formed. 

1 
3. The curve y = % between the x-values 3 and 1 is 

rotated about the y-axis. Find the volume of the solid 

of revolution formed in this way. 

4. Find the volume of the solid of revolution formed by 

rotating the part of the curve y = ¢* between x = 1 

and x = 5 about the x-axis. 

5 A solid is formed by rotating the curve 
y=sinx,xe [0,2n] about the x-axis. Find the 
volume of this solid. 

6. The part of the curve y = between the x-values 

  

2 and 3 is rotated about the x-axis. Find the volume of 

this solid. 

between x=5and x=7 

  

P The part of the line y = 

is rotated about the y-axis. Find the volume of the 

solid of revolution formed in this way. 

10. 

11. 

13. 

14. 

DEFINITE INTEGRATI 

The part of the curve y = ]+X between the x-values 

0and 2 is rotated about the x-axis. Find the volume of 

the solid formed in this way. 

Find the equation of the straight line that passes 

through the origin and through the point (hr). 
Hence use calculus to prove that the volume of a right 

circular cone with base radius r and height / is given 
by v = inrzh. 

Find the equation of a circle of radius r. Use calculus to 

prove that the volume of a sphere is given by the 
formula ¥ = 5"’3‘ 

The diagram shows 
a shape known as a 
frustum. Use calculus n 

to prove that its volume 

is given by the formula 

V= 2(31 +B,+ [B|B,) where B) and B, are the 

areas of the circular top and base respectively. 

‘The part of the curve f(x) = sinl'—‘;) between x = 0 and 

X =5 is rotated about the x-axis. Find the volume of 

this solid of revolution. 

‘The part of the curve f(x) = x2—x+2 between x =1 
and x = 2 is rotated about the x-axis. Find the volume 

of this solid of revolution. 

a Find the volume generated by the region between 

the y-axis and that part of the parabola y = x? 

from x = 1 to x = 3 when it is rotated about the 
y-axis. 
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15. 

17. 

18. 

19. 

20. 
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b Find the volume generated by the region 

between the x-axis and that part of the parabola 

» =2 from x = 1 to x = 3 when it is rotated 
about the x-axis. 

Find the volume of the solid of revolution that is 

formed by rotating the region bounded by the curves 
y = Jxand y= A/fi about: 

a the y-axis 

b the x-axis. 

Find the volume of the solid of revolution that is 

formed when the region bounded by the curve with 
equation y = 4 —x? and the line y = 1 is rotated about: 

a the y-axis 

b the x-axis. 

Find the volume of the solid generated by rotating the 

region bounded by the curves y? = x? and y? = 2—x 
about the x-axis. 

The volume of the solid formed when the region 

bounded by the curve y = ¢* -k, the x-axis and the 
line x = In3 is rotated about the x-axis is ©In3 units®. 
Find k. 

Find the volume of the solid of revolution formed by 
rotating the region bounded by the axes and the curve 

y = JBasinx +acosx,0<x<2m, a > 0 about the 

x-axis. 

If the curve of the function /() = sink6,k>0,6>0 

is rotated about the -axis, a string of sausages is 

made. Find k such that the volume of each sausage is 
T units? . 

21. 

22. 

Extra questions 

Answers 

a On the same set of axes, sketch the curves y = ax? 
and: 

.1'2 
y= l—: where a>0. 

Find the volume of the solid of revolution formed 

when the region enclosed by the curves in part a is: 

i rotated about the y-axis 

i rotated about the x-axis. 

On the same set of axes sketch the two sets 

of  points {(oy): (x=2)2+y2<4} and 
{(,»): (x—a)2+y2<d,ae 1-2,6[}. 

The intersection of these two sets is rotated about the 

x-axis to generate a solid. Find a if the volume of this 
solid is 7 units’. Give your answer to three decimal 

places. 

A donut is formed by rotating the curve 
feey) s (x—a)?+y2=1,]al > 1} about the y-axis. 
Find a if the volume of the donut is 1007 units’. 

   



  

An application of integration when relating it to areas 

is that of kinematics. Just as the gradient of the 

displacement-time graph produces the velocity-time graph, 

50 too then, we have that the area beneath the velocity- 
time graph produces the displacement-time graph. Notice 

that the area provides the displacement (not necessarily the 

distance!). Similarly with the acceleration—time graph, i.e. the 

area under the acceleration-time graph represents the 
velocity. 

  

The displacement over the interval [7), 1,] is given by 

L 
Displacement = s = jvdl 

I 

However, the distance covered over the interval [¢,,1,] 
is given by Y 5 

vt + J'vdr 

I a 

  Distance = 

—
 

    

     KINEMATICS 

    

The displacement is then given by: 

iz 3n 
! T 

s = J‘(] —2sin20)dt = [1+ cos2t :| 

0 

I (22 + cos( 5F)) - 0+ coston 
3n I 

=1.36 

That is, the object’s displacement measures (approx.) 1.36 
metres. 

‘This time, we will use 

the scratchpad of the & 
TI calculator followed 3\ 

by MENU 4 Caleulus | |5 
3 Integral. (1-2-sin(2 ¥)ax 

0 

The required I 
integral can be 

entered and either 

evaluated exactly or 

approximately. 

4 
(12 sin(2 ))ax 

0 
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As part of the graph lies below the t-axis, when determining 
the distance travelled we use the same principle as that which 
differentiates between the signed area and the actual area 
enclosed by a curve and the horizontal axis. In short: 

Displacement = Signed area 

Distance = Area. 

‘The first step is to determine the t-intercepts: 

Solving for 1 -2sin2¢ = 0 we have: 

. 1 T ST T ST 
U=-2U=S,=, ... ===, ... RS g 66 i 

Note that we only require the first two intercepts. Therefore, 
the distance is given by: 

x s i 
12 12 4 

x= I(I—ZSinZt)dt— _[(1 ~2sin20)dr + J(l ~2sin20)dr 

0 x s 
12 12 

Evaluating this expression is rather lengthy, and—unless we 

require an exact value—we might as well make use of the 

graphics calculator. There are a number of ways this can be 
done. We will use absolute value applied to the function. 

3w 2.7259 

4 
|1-2-sin(2-x)| ax 

0 

Distance travelled: = 0.1278 - (-0.6849) + 1.9132 = 2.7259. 

That is, object travelled (approx.) 2.73 m. 

‘The information s given as an acceleration. We must find the 

indefinite integral of this function to get a rule to give us the 
velocity. 

2 3 
a(t) =31+12,0<1£10= v(1) =J(31+12)dz =3T’+’§+ 

Now,when?=0,v=0.0=0+0+c=¢c =0 

The constant is zero because we are told that the rocket starts 

from rest. The distance travelled is the area under this velocity 

378 

time graph. This must be found using definite integration. 
As the graph of v(1) lies above the t-axis over the interval 
0<t<10, we have the distance D, given by 

10 
32 13) B f"]‘o 

D= o d = |t = .[n(z 3) =[5 12l 
3 104 

=100, 10 
2 12 

- l333%m 
‘The technique described in this example is the basis of the 

inertial navigator. This senses acceleration and integrates it 
to infer velocity. The instrument then integrates a second 
time to calculate distance travelled. Of course, none of these 

quantities are generally expressed as exact mathematical 
formulae and the calculation has to be performed using 
numerical approximation. 

Exercise 6.6.1 

1. Find the displacement equation, x(1), for each of the 
following: 

d*x dx x_ g dx _ = = a 2 where 7 3 andx=10whent=0. 

b & _ —(4sins+3cosr) where 4x _ 4 and 
dar dt 

x=2whent=0. 

1 

c é’:z_efil where§=4mdx:0when 
a2 ! 

t=0. 

2 The acceleration, a(7) ms™, of a body travelling in a 

straight line and having a displacement x(/) m from 
an origin is governed by a(f) = 6/-2 where: 

dx _ _ - G 0 and x=0when t=0. 

a Find the displacement of the body at any time . 

b Find the displacement of the body after 5 

seconds. 

c Find the distance the body has travelled after 5 
seconds.



A body moves along a straight line in such a way that 
its velocity, v ms”, is given by v(r) = —Jr+4+2. 

After 5 seconds of motion the body is at the origin O. 

a Sketch the displacement-time graph for this 

body. 

b How far will the body have travelled after 
another 5 seconds. 

A particle starts from rest and moves with a velocity, 

vms', where v = (- 5). Find the distance travelled 

between the two occasions when the particle is at rest. 

A stone is thrown vertically upwards from ground 

level with a velocity of 25 ms. If the acceleration of 

the stone is 9.8 ms* directed downwards, find the time 

taken before the stone reaches its highest point and the 
total distance travelled when the stone falls back to the 

ground. 

The velocity of a particle is given by v(r) = 3 —3sin3/ 

which is measured in m/s. 

a Find when the particle first comes to rest. 

b Find the distance travelled by the particle from 

when it started to when it first comes to rest. 

An object, starting from rest, moves in a straight line 
with an acceleration that is given by: 

52 a(t)   

- (z+1)3m 

Find the distance travelled during the first 9 seconds. 

An object has its velocity governed by the equation: 

v(t) = 105in(%r) m/s. 

a Given that s(0) = 0, find its displacement 

equation. 

b Find its displacement after 20 seconds. 

c Find its displacement during the 20th second. 

d How far has it travelled in twenty seconds? 

KINEMATICS 

    

9. A particle moving in a straight line has its acceleration, 

ams?, defined by the equation: 

= B ms?, 

At the end of the first second of motion, the particle 

has a velocity measuring 4 ms™'. 

a Find an expression for the velocity of the 
particle. 

b Given that its velocity approaches a limiting 

value of 6 ms™, find k. 

€ Find the distance travelled by the particle after a 

further 9 seconds. 

10. 

a Show that: 

2 (acosbx + bsinbx) | = e*cosbr 
dxla?+p2 : 

b The velocity of a vibrating bridge component is 
modelled by the function ¥ = e"2/cos(31). V 
ms-' is the velocity of the component and ¢ is the 

time in seconds after the observations begin. 

Find the distance the component travels in the first 
tenth of a second. 

Answers 
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Theory of Knowledge 

Calculus 

‘The word 'calculus' is derived from the Latin word meaning 

‘stone’. The connection between stones and calculation is the 

stone abacus: 

  

However, the problem that set Isaac Newton thinking was 

astronomic. 

The story that it was a falling apple is, however, Newton's. 

Actually, the problem was the details of planetary motion. 

The German astronomer Johannes Kepler (1571-1630) had 

discovered that the planets move around the sun in elliptical 

orbits. The sun is at one of the foci of the ellipse. 
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Kepler had discovered more than that. The planet moves 
more slowly as its distance from the sun increases, 

Specifically, the area it sweeps out in a given period is the 

same wherever it is in its orbit. 

./_\.. 

     

The green and orange areas are the same because the planet 

moves faster near the sun (green area) than it does at greater 

distances (orange area). 

Animation of planetary motion 

  

Newton was looking at a very complex problem as everthing 

appeared to be continuously changing. 

This was the stimulus to develop the calculus - the study of 

variation. 

His conclusion was that the force between the two bodies 

was proportional to the masses of the bodies and inversely 

proportional to the square of the distance between them. 

A truly remarkable intellectual achievement.



  

Further Integration 

‘e can obtain the antiderivative, F(x) + ¢, of a function 

fix) based on the result that i(F{x}) = M) 

Thatis, IF <E(AG)) = /) then Jrode = Feo e 

For example, if we know that %(sinSx): 5cos5x , then: 

chosSxk =sin5x+c. 

2x 
Similarly, if %(ln(xzfl)): T then: 

  
2. 

Jlxlildk=ln(,rz+l)+L 

We are using recognition to obtain antiderivatives. Such 

a skill is crucial to becoming successful at finding more 

complex antiderivatives. 

One particularly important result is based on the chain rule, 

from which we obtained the generalised ‘power rule’ for 
differentiation; 

4 9 = 
N )=ns L] 

From this result we have: 

J s = [oretor-as 

so that Jn/'(x)[flx)l" “lde = [fn))"+e 

This leads to the result: 

Jetewras = —=fgnti+c 

The use of this result is dependent on an ability to recognise 
the expressions g(x) and its derivative g(x) within the 

integrand. We consider a number of examples. 

  

a We observe that 2x(x2+9)° can be written as 
L)) with g(x) = x2+9. 

‘Therefore, by recognition we have: 

240y = ——(x2+9)5+1 _[2x(x+9)dx (249 e 

= daeoyee 

b We observe that (3x2+ 1)(x? +x)? can be written as 

2(0)[g(x)1? with g(x) = x> +x. 

Therefore, by recognition we have: 

I(3x2+ 13+ x)2dx = fi(}fl +x)2* e 

= %(xl +x)3+e 
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c We first express —2x4/1-x? in the power form, 
—2x(1-x2)1/2, 

We observe that —2x(1-x2)!"2 can be written as 

20201/ with g(x) = 1-22. 

  

Therefore, by recognition we have: 

J'-zm " = J—zm —x2)!24dx 

Ly 
1_‘.(|Ax2)z 
=+1 
2 

- é(]_xz)z/“c 

&= %;\/(l—xz)3+c 

  

a We rewrite 7 as 3x2(x3+4)4, 
3x2 

(3 +4) 

We observe that 3x2(x3 +4)* canbe writtenas £'(x)[g(x)]™* 
with g(x) = x3+4., 

Therefore, by recognition we have: 

  

  

23+ ayddy = —L (3 +4)-4+1 I3X (3 dy e = (4 e 

= _Ldraydae 
3 

1 R — 
3(x3+4)3 

b Firstwe rewrite 2= as (2-4xH)(2x 212, 
A2x 

‘Then, we observe that (2 —4x3)(2x—x#)"!/2 can be written 

as g(x)[g0)]!2 with g(x) = 2x—x*., 

By recognition we have: 

  I(z —4x3)(2x — x4y 24y = 1 

© = | = 2 . + o 

I o > :(\
‘ | = ES £ a 
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1 1 i ite ——/Tn(x + )2 c Firstwerewrite ——~/In(x+ 1) as plinGe+1)] 

We observe that A%[[ln(x +1)1'2 can be written as: 

Z@IEON? i 80) = I+ 1) 

By recognition we have: 
! 

L%l[ln(x+l)]”zdx - ann(xH)]ZHn 
1+1 
2 

%[In(x+l)]3/2+c 

=G+ DP+e 
3 

o 

What happens if the expression is not exactly in the form 
Jg(x) [g(x)]"dx, but only differs by some multiple? That is, 

whathappens when we have Ix(xl +3)4dx or .“Sx(xz +3)4dx 

rather than j' 2x(x2+3)4dx? 

As the expressions only differ by a multiple, we manipulate 
them so that they transform into J’g‘(x)[g(x)]"dn For 

example: 

Ix(x2+3)4dx: 

1 24338 = L L2 43y 40 = Lx2+3)5 zj'zx(x +3)4dr = 3x (43P +e = GO+ +e 

(i.e. multiply and divide by 2.) 

J'Sx(xz +3)4d = 

243y = 3 20 3y8 = Sxlx2+3) 5[xx2+3)%ax zj'zx(x +3)tdx = Sxz (243 ke 

(i.e. ‘take’ 5 outside the integral sign, then multiply and 
divide by 2.) 

- %( ¥24+3)5+¢ 

These manipulation skills are essential for successfully 
determining indefinite integrals by recognition.



  

Exercise 6.7.1 

For this set of exercises, use the method of recognition to 
determine the integrals. 

1. Find the following indefinite inlegrals, 

a jl()n/Sr- 2 b j( S 

s j—fix(l—sz)de d J'3A/}<9+2A/§)4dv 

T |22 Ze+3 
(x2 +3x+1)3 

Find the antiderivatives of the following. 

2 3 - - 2xext1 b Sk 
i 

. sec23yetandx 4 Qax+byetax+bo 

1 

e 3sinive 2 f 4 ptert 2 2 

Find the antiderivatives of the following. 

a 2xsin(x2+ 1) b isi“(&) 
Jx 

G lcos(z + l) d sinx./cosx 
x? x 

. sin3x £ 4sec?3x 
cos3x 1 + tan3x 

Find the antiderivatives of the following. 

  

  

2 
a 4422 b 

A5 
G o d 

  

Find the following indefinite integrals. 

a J’] fxzdx b J’ 

c J‘fidx d J. = 

  

  

    

INTEGRATION METHODS 

  

  

6. Evalua&e: 

« V201 +x312)S gy CLNES o [eraeemiacy ] T 
1 0 

3n 
T 

3sinx 4 

< 1+ cosx 4+x2 

0 
T 

1 2 

e Jeesen  f o [hsinda 
-1 
& 
4 1 

g J’,\/ tanysec2xdx  h J' 3x2ePdy 

-1 

e % 

I . 7 

i LTM j Jx X% —9dx 

e 3 

Extra questions 

  

Substitution Rule 

In the previous section, we considered integrals that required 
the integrand to be of a particular form in order to carry out 

the antidifferentiation process. 

For example, the integral IZXJI +x2dx is of the form 

_[h'(x)[h(x)]"dx and so we could proceed by using the result: 

.[hl(x)[h("'n"d’“ =L phortee. n+l 

Next consider the integral jx Jx—Tdx . This is not in the form 
h(x)[h(x)])"dx and so we cannot rely on the recognition 

approach we have used so far. To determine such an integral 

we need to use a formal approach. 

Indefinite integrals that require the use of the general power 
rule can also be determined by making use of a method 
known as the substitution rule (or change of variable 

rule). The name of the rule is indicative of the process itself. 

We introduce a new variable, u (say), and substitute it for 
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an appropriate part (or the whole) of the integrand. An 

important feature of this method is that it will enable us to 

find the integral of expressions that cannot be determined by 
the use of the general power rule. 

We illustrate this process using a number of examples 
(remembering that the success of this method is in making 

the appropriate substitution). The basic steps in integration 

by substitution can be summarized as follows: 

1. Define u (i.e. let u be a function of the variable which 

is part of the integrand). 

2. Convert the integrand from an expression in the 
original variable to an expression in u (this means that 
you also need to convert the ‘dx’ term to a ‘du’ term - 
if the original variable is x). 

3 Integrate and then rewrite the answer in terms of x (by 
substituting back for u). 

NB: This is only a guide, you may very well skip steps or use a 

slightly different approach. 

  

a Although this integral can be evaluated by making 
use of the general power rule, we use the substitution 
method to illustrate the process: 

In this case we let u = 2x+l=% = 2udx= —-du 

Having chosen u, we have also obtained an expression for dx 
and we are now in a position to carry out the substitution for 
the integrand: 

1.1 S 14 J‘4()=J’4 B Jx vyt = futx(Sau) = 1 futan = Incus v 

. _]Oll c 

Substituting back, we obtain, in terms of x: = %(Zx +1)5+¢ 

b This time, we let # = x2+1. Note the difference 
between this substitution and the one used in part a. 
‘We are making a substitution for a non-linear term! 
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s 2x l lu = xdx . = gy Now, u = x l:>d 3 

Although there is an x attached to the dx term, hopefully, 

when we carry out the substitution, everything will fall into 

place. 

Now, J'zx(xl +1)3dx = !2()(2 +1)3xdx 

(We have moved the x next to the dx.) 

= J‘2u3 x %du (substituting xdx for Yadu.) 

I Zlu‘+c 

%(12+I)3+c 

NB: A second (alternate) method is to obtain an 

expression for dx in terms of one or both variables. Make 
the substitution and then simplify. Although there is some 
dispute as to the ‘validity’ of this method, in essence it is the 
same. We illustrate this now: 

4:'fi - 2 by = ks i c Let u=x3 b 3xfodx 3Xzalu, making 

the substitution for u and dx, we have: 

= - —1/1 2 j J' Tx5a du j du (Notice the 

terms cancel!) 

= §u|/2+c 

= §A/x3—4+c 

  

Letting u =x71:# =Y 

This then gives J.x,./x ~ldx = Jxfidu s 

sdu = dx. 

We seem to have come at an impasse. After carrying out the 
substitution we are left with two variables, x and u, and we 

need to integrate with respect to u! This is a type of integrand 

where not only do we substitute for the x - 1 term, but we 
must also substitute for the x term that has remained as part



  

of the integrand, from « = x ~ 1 we have x = u + L. 

‘Therefore: 

Ixmdx = Jxfidu = J'(u+ Dl 2du 

J(u3/z+ul/2)du 

= 2524232, su 3u c 

- L e e 

Il 

  

1   Integrating both sides of % = with respect to x, we 

  

have: x+2 

dy o (L 
dxdx .[ x+2dx' 

Letu=x+2=% = | gy = dx. 
dx 

  1 1 So, dv = | —=du = |u™"2du = 2.Ju+ o [== jfi‘ a2 = 24u+e 

'Therefore, we have y = f(x) = 2Jx+2+c . 

Now, f2) =3=3 =2/d+cec=-1. 

Therefore, fix) = 2/x+2—1. 

  

di 
a Tetwe=ud+d=s @ — 39 L gy — g 

dx 3x2 

Substituting, we have: 

  

J‘ e"xfidu =53 edu 

~Leay =3 & 

b letu=er s eria = Lau 
dx er 

Substituting, we have: 

Ie"cos(e‘)dx = J‘excnsuxidu = J‘cosua‘u 

=sinu+c 

—sin(e) +e 

c Letu=x2+4=:r‘;—1;=21.‘.dx=2lxdu. 

Substituting, we have: 

3x _ 1 _ 31, _ 3 [ = F—:&x S 3fpdn = S   2 2 

=324y +e 3 

d Letw=x+1=% < 1oar = du. & 
Substituting, we have [x2Jx+ ldv = |x2Judu. Then, as 
there is still an x term in' the integrand, we will need to make 
an extra substitution. From # = x+ 1 wehavex = u—1. 

‘Therefore, 

_"xlfidu - J’(xfi 12 Judu = I(u2-2u+ Va2 

- I(u5/2—2u3/2+u”z)du 

Z 22 _452,:2,80 714 511 +3u +e 

-2 72_4 512 42, 32 7(X+1) 5(x-i»]) +3(x+l) +c 

 



  a Letu = cosBx:gf = —3sin3x.dy = -3 si:flxdu' 

Substituting, we have: 
. 1 

Isln}xcosz3x-br = J’qzx— fidu 

Y ) 3-[14 du 

I it = = Sud+ 330t 

Lo == + geos 3x+c 

b Letu = 5+c052x:5—: = -2sin2x..dx = —mdu. 

e in2x in2x 1 
Substituting, we have _SIEE_ gy = J‘fi\—)(* du 

’ 5+ cos2x u ngé; 

_ 1l =3 udu 

- -%mw ¢ 

SIn(5+ cos20) +e 

c Letu=arctanx:@= 1 “ - 2 e ]+X2..dx (1+x%)du.   

Substituting, we have: 

J'i'j—‘;”‘l’-‘dx = J'x;:r (1 xd = Iudu   

L2 sutc 
2 

= %(arcmnx)z +ec 

  

When using the substitution method to evaluate a definite 
integral, it is generally more efficient to transform the 
terminals (limits) of the integral as well as the integrand. This 
process is illustrated by the following examples. 
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a This is solved using the substitution u = x2, Z—;’ =2x 

The integrand is transformed to: 

e = [Lovan = Lo Ixe‘ dx .’.22 du ze" +ec 

Having established that the substitution will work, we can 
now use it to transform the terminals. 

The lower terminal is x = 1 =u = 12 = 1 and the upper 
terminalis x = 2=u = 22 = 4. 

[ Lopa_ 5let—e) 

4 
. e = [ Lovgy = Lot ‘Thus: f:xe" dx ".‘ 3¢ du 2[e 1 

b Useu=2x+3,d—'; =2 and: 

x=1=u= 

o1 112 
J)JflTm = I u'2du = —[—u”z] ; 2 23 

5x=3=u=9 

9 

5 

= Lgsn_s3n 3(972-5%2) 

= %(27-5./5) 

g, c Letx = 2sm(9,de 2co0s0. 

The terminals transform to: 

x=0=0=2sin6=6 =10 

x=2=2=2sin0=0 = ’2_‘ 

4~ 4sin0 x 2cos 60 .‘.fomm 

241~ sin%0 x 2c0s 00 

S
R
S
 Ri
a 

" & 
i © >
 + | 2 5 o 3 

L
2
,



Exercise 6.7.2 

Find the following, using the given u substitution. 

a jz.n/x2+ ldv, u = x2+1 6. 

b J3<‘~2A/x3+1dx,u . ) 

c J’2x3 4-xbddx,u = 4-x4 

  

  

  

2 
d 3x de,u = x3+1 

X+ 
7. 

x 
e ————dx,u = 3x2+9 

-[ (3x2+9)4 

f J‘er‘“"dx,u =x2+4 

2z+4 
—————dz,u = 22 - g Tk u = PHaz=s 

8. 

Using the substitution method, find: 

a fuhxia b [l =a 

€ I(x +DWx—1ldx  d jseczxe“’""dx 

9. 

Using an appropriate substitution, evaluate the 

following, giving exact values. 
1 1 

2x 2x2 
h b dx 

! x2+ ldr j #+1 
o 0 

12 T 

s (Rl a4 [P 
PAx—0 o 1+ sinx 

10 

10. 

Using an appropriate substitution, evaluate the 

following, giving exact values. 
T 

a rXA/xz+3dX [Paxsin(ax®  myax 1. 
1 0 

1 1 4 1 c J',I(SHZ) ded Lxflabc 

Using an appropriate substitution, find the following, 
giving exact values where required. 

T - n 

2. 3 3 2 
a J sin“xcosxdx b In sinxsecxdx 

0 & 
6 

Extra questions 

INTEGRATION METH 

  

J} sin Zx 

A/cos%~ 

3 . 
c J cosdxsin2xdx  d 

0 

Using an appropriate substitution, find the following, 

giving exact values where required. 

-1 
a _[ x5+ 2dv b f x2—xdx 

) -1 

Find the following indefinite integrals. 

[ 
J'; 
N8—2x—x2 

J—t—a b 
x2+6x+ 10 

— v d 

¢ -[A/[+4x-x2 
dx 

_2-x2 A4 
G2 1)(x2+4) x2+1 

1 
_x2 

Hence show that Iz—xdx = ar'clan(l). 
2+ 1)(x2+4) 3 

0 

Find r ] 
ox2+1 

Evaluate the definite integral in part a for: 

Given that , find A 

and B. Xz 4 

  dx, k>0 

i k=L i k=1 
3 

Find lim [ ——dv. Hence, find | L 
k- a2+ ox2+1 

  
1 1 

Find -[J; + Idx . Hence evaluate J' 
1 

dx 
oax+1 

; S 0 
If z = cisB, use the expansion of (Z— -] to show 
that 8sin*@ = cos46 —4cos20 +3. 

Hence, using the substitution x = ksin>8, evaluate: 

rx dv, 0<f<n. = 
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Integration by Parts 

The basics 

Consider the indefinite integral |xcosxdx. 

Applying any of the techniques we have been using so far will 

not help us determine the integral. Let us start the process by 
first finding the derivative of xsinx: 

do v i oo o > 
d—x(xsmx) = dx(x)smx +xdx(smx) (using product rule) 

LA — 
3 .dx(x sinx) = sinx +xcosx 

‘We observe that the term x.cosx has now appeared on the 

R.H.S. we can then write 

dy . . 
X.COSX = a(xsmx) — sinx 

. = (T it .jxcos.ulx = J[dx(xsmx) smx]dx 

= xsinx + cosx + ¢ 

Such a process requires considerable foresight. However, 
this integrand falls into a category of integrands that can be 
antidifferentiated via a technique known as integration by 
parts. The method is identical to that which we have just used 
in determining |xcosxdx. 

‘We develop a general expression for integrands that involve a 

product of two functions. 

Step 1: Consider the product u(x)v(x) . 

Step 2: Using the product rule for differentiation we have: 

d — u @ ZH@V@) = u+ V(X)dX‘ 

Step 3: Integrating both sides with respect to x gives: 

u(v(x) = J'u(x)Z—‘;dx + J'm)%dx 

Step 4: Rearranging, to obtain JU(I)Z—;dx , we have: 

In the previouscase, we would set, #(x) = x and ZT‘; = cosx 

and the result would then follow through. 

The success of this technique is dependent on your ability to 
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identify the ‘correct’ #(x) and v(x). 

For example, had we used u(x) = cosx and Z—; =x, 

we would have the expression 

J.x cosxdx = %xzcosx = I%x3(~sinx)dx 

— which is not helpful. 

We now consider some examples to highlight the process 
involved. 

  

a J'x cosxdx . 

Applying the parts formula with #(x) = x and 4 cosxsit 
follows that v(x) = sinx gives: & 

u(x) FIEd du 
dx 

  

x 1 
  

/v(x]yfl] 

\ =y 
sinx cosx: 
        

Iu(x)z—‘;dx = wwv@ - fuw %dx 

R 
j xeosxdx = xxsinx - jsinxx 1dv 

  
= xsinx—(—cosx) + ¢ 

= xsinx + cosx +¢ 

You should check that this is correct by differentiating the 
answer. 

Many people remember the ‘parts formula’ by thinking of 
the question as consisting of two parts each of which are 

functions of the independent variable. One of these functions 
is to be integrated and the other differentiated. Obviously it 
pays to select a function that becomes simpler in derivative 

form to be the ‘part’ that is differentiated. Often, though not 
always, this will be the polynomial part.



INTEGRATION METH 

  

  

  

        

b Igel‘dr_ 

In this case we choose the function to be differentiated 5. Find: 
as u(x) = % and the function to be integrated as T | 

@ 1 a rxsinlxdx b J xe¥dx 
&= e2r = y(x) = se¥ 0 0 
dx 2 

uw e du e 
dx c JJ xIn(x+1)dxd f(x—])lnxdx 

| 1 

% 1 

|/ 3 30 % 
r 7 1 

“ v(x) Find dy \ - J.nxcoslxdx £ rflx{dx 

‘\ dx “ 8 ! 

" [ e F 

1 v, _ _ du 5 2Tan-! JuwGtax = T)vr Jvn Ghas 6. Find jox TanLxds . 

[ Fema = Exler - [lexda 7. Show that < In(seex + tanx)] = sec. 
3 4 o 2 

O P = Zer-metite : 

7 
W Hence findj secixdy | 

0 

Exercise 6.7.3 

1 Integrate the following expressions with respect to x. 8. Find: 

a xsinx b xcosX a Jcos(lnx)dx 
2 

c 2xsin% d xe X 

b Jsin( Inx)dx 

  

2. Use integration by parts to antidifferentiate: 

a  xdeE b xJx2 N 

3 Find: 

a ICus" xdy b JTan' Lxdx Extra questions 

4. Find: 

a IxCos"xdx b IxTan"xdx 
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Repeated integration by parts Exercise 6.7.4 

In Exercise 6.7.3, Question 7 required the repeated use of L. 
integration by parts. There will be occasions on which you 
will need to use the ‘parts’ formula more than once to evaluate 

Find the following integrals (not all are best evaluated 

using the parts formula). 

  

  

  

  

an integral as in the following examples. a sze"dx b J.?:x2 cos(2x)dx 

¢ _’}3 In(2x)dx d Ie‘sin(lx)dx 

- e IIICOS(}X)dx | J’E&‘COS(ZXMX Bk 1 g I4x sin de h .|'x Inxdx 

i JaGora 5 feossinod 
1. e a 3 =%k ‘. 1 Jreoszvar = w2xLsin2e— [20x Lsinavax 

[ using u = x2, gfi = cost] k Ie”"cosidx 1 Ixz Wx+ 2dx 

oo — = Lagnox Repeated use of 
2 parts’ formula. m J‘ S (ar)ds o J- x2 ax 

1o Ja—x? 
=3 sin2x — 

.[ 3x2dx X 
= %xz sin2x + %xcost - %sian +c ° Ix2-9 P J’,fl +4 

2 

1 [aae b rginTdy = 2% x - X 

S ol e 0053 

2 Evaluate the following. = “3¢2eos] + 18 sind-36 [ sindax g x 
) . 

a xcos?xdy b xsinxcosxdx f f 
The required integral appears on both sides of this equation, 
which rearranges to: 23 In2 

c Ji e¥cosxdx d x2e~¥dx 
z 0 

37 [evsindr = 3e2rcos? + 18e2tsind 2 3 3 3 = 
2 gin X 3 e Xy 18 2 x e _[n e®cosbxdx  f r([nx)zdx 

« [e2osinoih= i3 00 posin 18 vz & T ..Je sinddr = ~Zecos + Zesind + ¢ z 1 

T | e e 

[E] [=] 
Answers 

  

  e
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athematics has clearly played a significant part in the 

development of many past and present civilisations. 

There is good evidence that mathematical, and probably 

astronomical techniques, were used to build the many 
stone circles of Europe which are thought to be at least 
three thousand years old (Thom). It is likely that the 

Egyptian pyramids and constructions on Aztec and Mayan 

sites in Central America were also built by mathematically 

sophisticated architects. Similarly, cultures in China, India 
and throughout the Middle East developed mathematics a 
very long time ago. It is also the case that there have been very 

successful cultures that have found little use for mathematics. 
Ancient Rome, handicapped, as it was, by a non-place value 

number system did not develop a mathematical tradition 
at anything like the same level as did Ancient Greece. Also, 

the Australian Aborigines, who have one of the most long- 

lasting and successful cultures in human history, did not find 

much need for mathematical methods. The same is true of 
many aboriginal cultures of Africa, Asia and the Americas. 

This may well be because these aboriginal cultures did not 

value ownership in the way that western culture does and 

had no need to count their possessions. Instead, to aboriginal 

cultures, a responsible and sustainable relationship with 

the environment is more important than acquisition and 

exploitation. Maybe we should learn from this before it is too 

late! 

Mathematics has developed two distinct branches: pure 

mathematics, which is studied for its own sake, and applied 

mathematics which is studied for its usefulness. This is not to 
say that the two branches have not cross-fertilised each other, 

for there have been many examples in which they have. 

  

The pure mathematician Pierre 

de Fermat (1601-1665) guessed 
that the equation x” + y” = z7 

has whole numbered solutions 

for n = 2 only. To the pure 
mathematician, this type of 
problem is interesting for its own 

sake. To study it is to look for 

an essential truth, the ‘majestic 

clockwork’ of the universe. Pure 

mathematicians see ‘beauty’ 

and ‘elegance’ in a neat proof. 

To pure mathematicians, their 

subject is an art. 

    

   

Applied mathematics seeks to develop mathematical objects 
such as equations and computer algorithms that can be used 

to predict what will happen if we follow a particular course of 

action. This is a very valuable capability. We no longer build 

bridges without making careful calculations as to whether 

or not they will stand. Airline pilots are able to experience 
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serious failures in commercial jets without either risking lives 
or the airline’s valuable aeroplanes or, indeed, without even 
leaving the ground. 

  

Silk, rabbits and Pisa 

‘The term ‘Silk Road” is applied to a network of trade routes 
linking China and the Spice Isles (now Indonesia) through 

India and Arabia to Africa and Europe. Traders and their 

products have been passing along these routes on both 
land and sea for millennia. It was not just silk and spices 

and other goods that travelled the Silk Road. It is virtually 

certain that ideas, games, folk tales etc. also travelled with 

the traders. 

This makes it difficult to attribute inventions with certainty. 

It appears likely that chess was invented in India and was 
carried by traders asa good way of passing the evenings in 

a stimulating way, but we cannot be sure. 

  

It is virtually certain that many key mathematical ideas 

passed along the Silk Road. Schools of mathematics that 
were using a place-value decimal system were flourishing 

in China over 2000 years ago. It seems likely that the 

decimal number system (including zero) we use today was 

developed in India in the 2nd century, This spread and had 

reached Persia by the year 800. Al-Kh mi’s book On 

the Calculation with Hindu Numerals appeared at around 

this time. 

    

Leonardo of Pisa (c1170 - ¢1250), known as Fibonacci, 

was a trader. He saw that Arab traders using a place- 

value system for their calculations found them easier 
than Europeans who used Roman numerals. Leonardo 

travelled the Mediterranean studying the work of Arab 

mathematicians. The result was the book Liber Abaci in 

  

  

which Fibonacci introduced the modus Indorum (method 

of the Indians) to a European audience.



    

Axioms 

Mathematics is based on axioms. These are ‘facts’ that are 

assumed to be true. An axiom is a statement that is accepted 
without proof. Early sets of axioms contained statements that 
appeared to be obviously true. Euclid postulated a number of 

these ‘obvious’ axioms. 

“Things equal to the same thing are equal to each other’; 

Thatis, if y=a and x= a then y = x. 

Euclid was mainly interested in geometry and we still call 

plane geometry ‘Euclidean. In Euclidean space, the shortest 

distance between two points is a straight line. We will see later 
that it is possible to develop a useful, consistent mathematics 

that does not accept this axiom. 

Most axiom systems have been based on the notion of a ‘set, 

meaning a collection of objects. An example of a set axiom is 

the ‘axiom of specification’. In crude terms, this says that if we 
have a set of objects and are looking at placing some condition 
or specification on this set, then the set thus specified must 
exist. We consider some examples of this axiom. 

Assume that the set of citizens of China is defined. If we 

impose the condition that the members of this set must be 
female, then this new set (of Chinese females) is defined. 

As a more mathematical example, if we assume that the 

set of whole numbers exists, then the set of even numbers 
(multiples of 2) must also exist. 

A second example of a set axiom is the ‘axiom of powers’ 

For each set, there exists a collection of sets that contains 

amongst its elements all the subsets of the original set. If we 

look at the set of cats in Bogotd, then there must be a set that 

contains all the female cats in Bogota, another that contains 

all the cats with green eyes in Bogotd, another that contains 

all the Bogotd cats with black tails etc. A good, but theoretical, 

account of axiomatic set theory can be found in Halmos, 

1960. 

Mathematics has, in some sense, been a search for the smallest 

possible set of consistent axioms. In the section on paradox, 
we will look further at the notion of axioms and the search for 

asetofassumptions that does not lead to contradictions. There 
is a very strong sense in which mathematics is an unusual 

pursuit in this respect. Pure mathematics is concerned with 

absolute truth only in the sense of creating a self-consistent 
structure of thinking. 

As an example of some axioms that may not seem to be 
sensible, consider a geometry in which the shortest path 
between two points is the arc of a circle and all parallel lines 
meet. These “axioms” do not seem to make sense in “normal” 
geometry. The first mathematicians to investigate non- 
Euclidean geometry were the Russian, Nicolai Lobachevsky 
(1792-1856) and the Hungarian, Janos Bolyai (1802-1860). 

Independently, they developed self-consistent geometries 
that did not include the so called parallel postulate which 
states that for every line AB and point C outside AB there is 

only one line through C that does not meet AB. 

      

< 
A 

Since both lines extend to infinity in both directions, this 
seems to be obvious' Non-Euclidean geometries do not 

include this postulate and assume either that there are no 

lines through C that do not meet AB or that there is more 
than one such line. It was the great achievement of 
Lobachevsky and Bolyai that they proved that these 
assumptions lead to geometries that are self consistent and 

thus acceptable as ‘true’ to pure mathematicians. In case you 

are thinking that this sort of activity is completely useless, one 
of the two non-Euclidean geometries discussed above has 
actually proved to be useful; the geometry of shapes drawn on 
a sphere. This is useful because it is the geometry used by the 
navigators of aeroplanes and ships. 

The first point about this 
geometry is that it is 
impossible to travel in Lom 
straight lines. On the surface elhi 
of a sphere, the shortest 

distance between two points 

is an arc of a circle centred at 

the centre of the sphere (a 
great circle). The shortest 
path from London to Delhi is circular. If you want to see this 

393



CHAPTER 6 

  

path on a geographer’s globe, take a length of sewing cotton 

and stretch it tightly between the two cities. The cotton will 

follow the approximate great circle route between the two 

cities. 

Ifwe now think of the arcs of great 
circles as our ‘straight lines, what 
kind of geometry will we get? 

You can see some of these results 

without going into any complex 

calculations. For example, what 

would a triangle look like? 

The first point is that the angles of this triangle add up to 
more than 180°. There are many other ‘odd’ features of this 

geometry. However, fortunately for the international airline 

trade, the geometry is self consistent and allows us to navigate 

safely around the surface of the globe. Thus non-Euclidean 
geometry is an acceptable pure mathematical structure. 

While you are thinking about unusual geometries, what are 

the main features of the geometry of shapes drawn on the 

‘saddle surface’? 

Or the even more exotic 'toroid': 

  

One final point on the subject of non-Euclidean geometries; 

it seems to be the case that our three-dimensional universe 

is also curved. This was one of the great insights of Albert 

Einstein (1879-1955). We do not yet know if our universe 

is bent back on itself rather like a sphere or whether another 

model is appropriate. A short account of non-Euclidean 

Geometries can be found in Cameron (pp. 31-40). 

By contrast, applied mathematics is judged more by its ability 
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to predict the future, than by its self-consistency. Applied 

mathematics is also based on axioms, but these are judged 

more on their ability to lead to calculations that can predict 

eclipses, cyclones, whether or not a suspension bridge will 
be able to support traffic loads, etc. In some cases such 
mathematical models can be very complex and may not give 
very accurate predictions. Applied mathematics is about 

getting a prediction, evaluating it (seeing how well it predicts 
the future) and then improving the model. 

In summary, both branches of mathematics are based on 

axioms. These may or may not be designed to be ‘realistic. 

What matters to the pure mathematician is that an axiom set 

should not lead to contradictions. The applied mathematician 

is looking for an axiom set and a mathematical structure built 
on these axioms that can be used to model the phenomena 

that we observe in nature. As we have seen, useful axiom sets 

need not start out being ‘sensible’ 

‘The system of deduction that we use to build the other truths 

of mathematics is known as proof. 

Numbers and the transcendental 
Many mathematical words have been coined to describe 

mathematical ideas and objects. ‘Logarithm’ is an example 

of such a word. It is derived from the Greek word logos 

which means ‘reckoning. It does not have a commonly used 
meaning outside mathematics. However, mathematicians 

sometimes use everyday words to describe mathematical 

ideas in ways that may sometimes be confusing. 

For example, the word ‘prime’ in everyday usage means 

‘of first importance, main, ... In mathematics, a prime 
number is one with exactly two factors. It is true that this 

makes prime numbers primarily interesting. The point is 

that the two meanings are not the same. 

When studying this chapter on logarithms, you will have 

encountered Euler’s number, e. This number has been 

shown to be irrational (like V2). However, it also has the 

property that it is not the solution of any polynomial 
equations with rational coefficients. This is a big claim 

given that the polynomials can have any number of terms 
going up to any power and that we also have an infinite 

choice for each coefficient. This was first proved by Charles 

Hermite in the 1870s. 

All transcendental numbers are irrational, but not all 

irrational numbers are transcendental. V2, a solution to 
the equation x* - 2 =0, is irrational but not transcendental. 

The list of known transcendental numbers is quite short 

(it includes m) but not, oddly, (m + e). However, the 

transcendental numbers are the most numerous of all the 

  

types of real numbers.



    

Proof 

Proof has a very special meaning in mathematics. We use the 
word generally to mean “proof beyond reasonable doubt” in 
situations such as law courts when we accept some doubt in a 

verdict. For mathematicians, proof is an argument that has no 
doubt at all. When a new proof is published, it is scrutinised 

and criticized by other mathematicians and is accepted when 
it is established that every step in the argument is legitimate. 
Only when this has happened does a proof become accepted. 

Technically, every step in a proof rests on the axioms of the 

mathematics that is being used. As we have seen, there is more 

than one set of axioms that could be chosen. The statements 
that we prove from the axioms are known as theorems. 
Once we have a theorem, it becomes a statement that we 

accept as true and which can be used in the proof of other 

theorems. In this way we build up a structure that constitutes 
a “mathematics”. The axioms are the foundations and the 
theorems are the superstructure. In the previous section we 
made use of the idea of consistency. This means that it must 
not be possible to use our axiom set to prove two theorems 

that are contradictory. 

There are a variety of methods of proof available. This section 
will look at three of these in detail. We will mention others. 

Rules of inference 

All proofs depend on rules of inference. Fundamental to 
these rules is the idea of ‘implication’ 

As an example, we can say that 2x = 4 (which is known as a 

proposition) implies that x = 2 (provided that x is a normal 
real number and that we are talking about normal arithmetic). 

In mathematical shorthand we would write this statement as 

2x =4=x =2 

This implication works both ways because x = 2 implies 
that 2x = 4 also. This is written as x = 2=2x = 4 or 
the fact that the implication is both ways can be written as 
X = 2¢2x = 4.The < symbolisreadas If and only 

  

CALcuLUS 

if" or simply as ‘If, i.e. If with two fs. 

Not every implication works both ways in this manner. If x 

= 2 then we can conclude that x> = 4. However, we cannot 

conclude the reverse, i.e. x> = 4 implies that x = 2 is false 

because x may be -2. 

Sothat x = 2= x2 = 4 isall that can be said in this case. 

‘There are four main rules of inference: 

The rule of detachment: from a is true and « = / is true 
we can infer that b is true. a and b are propositions. 

If the following propositions are true: 

It is raining. 

If it is raining, I will take an umbrella. 

We can infer that I will take an umbrella. 

The rule of syllogism: from ¢ =/ is true and b= ¢ 

is true, we can conclude that « = ¢ is true. a, b & ¢ are 

propositions. 

If we accept as true that: 

if x is an odd number then x is not divisible by 4 
(a=>b)and, 

if x is not divisible by 4 then x is not divisible by 16 
(b=c) 

‘We can infer that the proposition; 

if x is an odd number then x is not divisible by 16 
(a=>c)istrue. 

The rule of equivalence: at any stage in an argument we can 
replace any statement by an equivalent statement. 

If x is a whole number, the statement x is even could be 

replaced by the statement x is divisible by 2. 

The rule of substitution: If we have a true statement about 
all the elements of a set, then that statement is true about 
any individual member of the set. 

If we accept that all lions have sharp teeth then Benji, who is 

alion, must have sharp teeth. 

Now that we have our rules of inference, we can look at some 

of the most commonly used methods of proof. 

395



Proof by exhaustion 

This method can be, as its name implies, exhausting! It 

depends on testing every possible case of a theorem. 

Consider the theorem: Every year must contain at least one 

‘Friday the thirteenth’ 

There are a limited number of possibilities as the first day of 

every year must be a Monday or a Tuesday or a Wednesday.... 

ora Sunday (7 possibilities). Taking the fact that the year may 

or may not be a leap year (with 366 days) means that there are 
going to be fourteen possibilities. 

Once we have established all the possibilities, we would look 

at the calendar associated with each and establish whether 
or not it has a ‘Friday the thirteenth’ If, for example, we are 

looking at a non-leap year in which January Ist is a Saturday, 

there will be a ‘Friday the thirteenth’ in May. Take a look at 
all the possibilities (an electronic organiser helps!). Is the 

theorem true? 

Direct proof 

The diagrams on the following page represent a proof of 
the theorem of Pythagoras described in The Ascent of Man 

(Bronowski, pp. 158-161). The theorem states that the area of 
a square drawn on the hypotenuse of a right-angled triangle is 

equal to the sum of the areas of the squares drawn on the two 

shorter sides. The method is direct in the sense that it makes 

no assumptions at the start. Can you follow the steps of this 
proof and draw the appropriate conclusion? 
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Proof by contradiction 

This method works by assuming that the proposition is false 
and then proving that this assumption leads to a contradiction. 

The number .2 greatly interested classical Greek 

mathematicians who were unable to find a number that, 

when it was squared, gave exactly 2. 

Modern students are often fooled into thinking that their 
calculators give an exact square root for 2 as when 2 is entered 

and the square root button is pressed, a result (depending on 

the model of calculator) of 1.414213562 is produced. When 

this is squared, exactly 2 results - but not because we have 
an exact square root. It results from the way in which the 

calculator is designed to calculate with more figures than it 
actually displays. 

    
2 1.41421 [ 

2   (1.4142135623731)2 
The first answer is stored to more figures than are shown, 

the result is rounded and then displayed. The same is true 

of the second result which only rounds to 2. Try squaring 
1414213562, the answer is not 2. 

The theorem we shall prove is that there is no fraction that 

when squared gives 2. This also implies that there is no 

terminating or recurring decimal that, when squared, gives 
exactly 2, but this further theorem requires more argument. 

The method begins by assuming that there is a fraction #/, 

(p and q are integers) which has been cancelled to its lowest 
terms, such that*/, = 2. From the assumption, the argument 

proceeds: 

2 
2=/ :>p—z=2 = p? =2¢>= p? iseven = p is even 
q q 

As with most mathematical proofs, we have used simple 

axioms and theorems of arithmetic. The most complex 

theorem used is that if p? is even, then p is even. Can you 
prove this? 

‘The main proof continues with the deduction that if p is even 
there must be another integer, 1, that is half p. 

p=2r=p>=4r2=2¢> = 42 

= g% = 2r2= g?*is even = q is even 

We now have our contradiction as we assumed that//_ was in 

its lowest terms so p and ¢ cannot both be even. This proves 

the result, because we have a contradiction. 

This theorem is a very strong statement of impossibility.



  

There are very few other areas of knowledge in which we 

can make similar statements. We may be virtually certain 

that we will never travel faster than the speed of light but it 

would be a brave physicist who would state with certainty 

that it is impossible. Other methods of proof include proof by 
induction which is mainly used to prove theorems involving 

sequences of statements. 

Whilst on the subject of proof, it is worth noting that it is 

much easier to disprove a statement than to prove it. When 

we succeed in disproving a statement, we have succeeded in 

proving its negation or reverse. To disprove a statement, all 

we need is a single example of a case in which the theorem 
does not hold. Such a case is known as a counter-example. 

The theorem ‘all prime numbers are odd’ is false. This can be 
established by noting that 2 is an even prime and, therefore, 
is the only counter-example we need to give. By this method 
we have proved the theorem that ‘not every prime number is 

odd: 

This is another example of the way in which pure 

mathematicians think in a slightly different way from other 
disciplines. Zoo-keepers (and indeed the rest of us) may be 

happy with the statement that “all giraffes have long necks” 

and would not be very impressed with a pure mathematician 
who said that the statement was false because there was one 

giraffe (with a birth defect) who has a very short neck. This 

goes back to the slightly different standards of proof that are 
required in mathematics. 

Counter-examples and proofs in mathematics may be difficult 

to find. 

Consider the theorem that every odd positive integer is the 
sum of a prime number and twice the square of an integer. 

Examples of this theorem that do work are: 

5=3+2x1215 = 13+2x1235 = 17+2x32. 

The theorem remains true for a very large number of cases 
and we do not arrive at a counter-example until 5777. 

Another similar “theorem” is known as the Goldbach 

Conjecture. Christian Goldbach (1690-1764) stated that every 

even number larger than 2 can be written as the sum of two 

primes.Forexample,4 = 2+2,10 = 3+7,48 = 19+29 

etc. No-one has ever found a counter-example to this simple 

conjecture and yet no accepted proof has ever been produced, 

despite the fact that the conjecture is not exactly recent! 

Finally, whilst considering proof, it would be a mistake to think 

that mathematics is a complete set of truths that has nothing 

which needs to be added. We have already seen that there are 

unproved theorems that we suspect to be true. It is also the 

  

case that new branches of mathematics are emerging with a 

fair degree of regularity. During this course you will study 
linear programming which was developed in the 1940s to help 
solve the problems associated with the distribution of limited 

resources. Recently, both pure and applied mathematics have 

been enriched by the development of “Chaos Theory”. This 
has produced items of beauty such as the Mandelbrot set and 
insights into the workings of nature. It seems, for example, 
that the results of Chaos Theory indicate that accurate long- 
term weather forecasts will never be possible (Mandelbrot). 

  

Counting rabbits 
Mathematicians are searchers after pattern. This reflects 
an innate human proclivity for looking for connections 
even when none exist. There is nothing the tabloid press 
loves more than a peasant who finds a the face of the US 
president when they slice open a watermelon. However, 

most of these “connections” have no actual meaning. 

Can the same be said of mathematical connections? 

Here are the first few rows 
of what is variously called 103 3 1 

the “Chinese triangle” or 1 4 6 4 1 

“Pascal’s triangle”™: 1 5 10 10 5 1 
1 6 15 20 15 6 1 

Now displace each row to the right to produce the echelon 

form shown below and 

sum the columns(only the 1 

first seven columns are Yan 
complete). 1331 

14641 
1510105 1 

It looks like we have the Lapraiad 
Fibonacci sequence (and 

1 513 

  

the rabbits) again. How 

can you be certain that this is not just chance and that the 

pattern continues forever. 

What distinguishes the true mathematician from the 
presidential watermelloners is that a mathematician will 
demand a proof. Can you supply it? 

And once you have a proof, does this imply that the 

polynomial coefficients are really connected to the mating 
habits of rabbits? 
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Paradox 

What is a paradox? 

Pure mathematics is a quest for a structure that does not 

contain internal contradictions. A satisfactory mathematics 

will contain no ‘nonsense’ 

Consider the following proof: 

Letx =1 Thenx2—1 = x—1 

Try substituting x = 1 to check this line. 

(x+Dx-1) =x-1 

Factorizing using the difference of two squares. 

Dividing both sidesby x-1:  x+1 =1 

Substitutingx=1....2=1 

‘There is obviously something wrong here as this is the sort of 
inconsistency that we have discussed earlier in this chapter, 

but what is wrong? To discover this, we must check each line 
of the argument for errors or faulty reasoning. 

must be acceptable as we are entitled to assign a numerical 
value to a pronumeral. 

is true because the left-hand and right-hand sides are the 
same if we substitute the given value of the pronumeral. 

is a simple factorisation of the left-hand side. 

is obtained from line 3 by dividing both sides of the equation 
by x - 1 and should be acceptable as we have ‘done the same 
thing’ to both sides of the equation. 

is obtained from line 4 by substituting x = 1 and so should 
give the correct answer. 

Obviously we have an unacceptable conclusion from a 
seemingly watertight argument. There must be something 

there that needs to be removed as an acceptable operation in 
mathematics. 

The unacceptable operation is dividing both sides by x - 1 

and then using a value of 1 for x. What we have effectively 

done is divide by a quantity that is zero. It is this operation 

that has allowed us to prove that 2 = 1, an unacceptable result. 
When a paradox of this sort arises, we need to look at the 

steps of the proof to see if there is a faulty step. If there is, then 

the faulty step must be removed. In this case, we must add 
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this rule to the allowed operations of mathematics: 

Never divide by a quantity that is, or will become, zero. This 
rule, often ignored by students, has important implications 
for algebra and calculus. 

Some paradoxes are arguments that seem to be sound but 

contain a hidden error and thus do not contain serious 

implications for the structure of mathematical logic. An 
amusing compilation of simple paradoxes can be found in 

Gardner (1982). An example is the “elevator paradox”. 

Why does it always seem that when we are waiting for an 
elevator near the bottom of a tall building and wanting to 
g0 up, the first elevator to arrive is always going down? Also, 

when we want to go back down, why is the first elevator to 

arrive always going up? Is this a real phenomenon or is it just 

a subjective result of our impatience for the elevator to arrive? 

Or is it another example of Murphy’s Law - “whatever can go 

wrong will go wrong”? 

This is quite a complex question, but a simple explanation 

may run as follows: 

If we are waiting near the bottom of a tall building, there are 
a small number of floors below us from which 
elevators that are going up may come and then 
pass our floor. 

By contrast, there are more floors above us from 

which elevators may come and then pass our 

floor going down. 

On the basis of this and assuming that the 
elevators are randomly distributed amongst the 

floors, it is more likely that the next elevator to 
pass will come from above and will, therefore, be 

going down. 

By contrast, if we are waiting near the top of a 

tall building, there are a small number of floors 

above us from which elevators that are going 
down may come and then pass our floor. 

Also, there are more floors below us from which 

elevators may come and then pass our floor 

going up. 

It is more likely that the next elevator to pass will 
come from below and will, therefore, be going 
up.   A fuller analysis of this paradox can be found in Gardner (pp. 
96-97).



  

The elevator paradox does not contain serious implication 

for the structure of mathematics like our first example. We 

will conclude this section with a look at a modern paradox 

that did cause a re-evaluation of one of the basic ideas of 

mathematics, the set. 

Russell’s Paradox 

Bertrand Russell (1872-1970) looked in detail at the basic set 

axioms of mathematics. We do regard the existence of sets as 
axiomatic in all mathematical structures. Does this mean that 

we can make a set that contains ‘everything’? There would 

seem to be no difficulty with this as we just move around 
the universe and sweep everything that we meet into our set, 

numbers, words, whales, motorcycles etc. and the result is the 

set that contains everything. 

Russell posed the following question which we will relate in 

the context of library catalogues. 

Every library has a catalogue.   
There are various forms that NEWEL LIBRARY | 

this catalogue may take; s 4 

a book, a set of cards, a I Nelson™ 31742   

computer disc etc. Whatever 

form the catalogue in your 
local library takes, there is a 

sense in which this catalogue 
is a book (or publication) owned by the library and, as such, 
should appear as an entry in the catalogue: 

o 
ted by F Wills. Edited '”fiz{z   

  

    

Of course, many librarians will decide that it is silly to include 

the catalogue as an entry in the catalogue because people who 

are already looking at the catalogue know where to find it in 

the library! It follows that library catalogues can be divided 

into two distinct groups: 

Catalogues that do contain an entry describing themselves. 

Catalogues that do not contain an entry describing themselves. 

Next, let us make a catalogue of all the catalogues of type two, 
those that do not contain themselves. 

This gives us a problem. Should we include an entry 

describing our new catalogue? If we do, then our catalogue 

ceases to be a catalogue of all those catalogues that do not 

contain themselves. If we do not, then our catalogue is no 

longer a complete catalogue of all those catalogues that do not 
contain themselves. 

The conclusion is that making such a catalogue is impossible. 
This does not mean that the library catalogues themselves 
cannot exist. We have, however, defined an impossible 
catalogue. 

In set terms, Russell’s paradox says that sets are of two types: 

Sets that do contain themselves. 

Sets that do not contain themselves. 

The set of all sets of type 2 cannot be properly defined without 

reaching a contradiction. 

The most commonly accepted result of Russell’s paradox is the 

conclusion that we have to be very careful when we talk about 
sets of everything. The most usual way out is to work within 

a carefully defined universal set, chosen to be appropriate 

to the mathematics that we are undertaking. If we are doing 
normal arithmetic, the universal set is the set of real numbers. 

Induction 

It has already been observed that the mathematical use 

of some words may differ from their vernacular use. In 

this chapter, you have seen the particular meaning that 

induction has in mathematics. In everyday use, it (and its 

related words) can have other meanings: “Babe Ruth was 

inducted into the Baseball Hall of Fame”. “If Kylie has not 

had her baby by the end of the month, the doctors will 

induce it” “The induction stroke of a petrol engine draws a 

fuel/air mix into the cylinder.” In Physics, when a magnet 

moves near an electrical conductor, an electric potential is 
said to be induced in the conductor. This is the principle 
behind the dynamo. 

On a more philosophical note, you will have seen that 

the method of mathematical induction requires you to 
assume the truth of what you are trying to prove. This is 

a surprisingly common error in general discourse - watch 

out for it in your own writing as well as in the writing of 
others! 

Mathematics and other 
Disciplines 
When writing Theory of Knowledge essays, students are 

required to develop their arguments in a cross-disciplinary 

way. For more details on this, you are strongly advised to 
read the task specifications and the assessment criteria that 
accompany the essay title. You are reminded that it is these 

statements that define what is expected of a good essay, not 

the contents of this Chapter which have been provided as 

a background resource. A good essay will only result if you 
develop your own ideas and examples in a clear and connected 

manner. Part of this process may include comparing the 
‘mathematical method’ described earlier with the methods 
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that are appropriate to other systems of knowledge. 

As we have seen, mathematics rests on sets of axioms. This 

is true of many other disciplines. There is a sense in which 
many ethical systems also have their axioms such as “Thou 
shalt not kill’ 

The Ancient Greeks believed that beauty and harmony are 
based, almost axiomatically, on mathematical proportions. 
The golden mean is found by dividing a line in the following 
ratio: 

A B c 
  

The ratio of the length AB to the length BC is the same as the 
ratio of the length BC to the whole length AC. 

The actual ratio is 1:%(1 +4/5) orabout 1:1.618. 

The Greek idea was that if this line is converted into a rectangle, 

then the shape produced would be in perfect proportion: 

  

Likewise, the correct place to put the centre of interest in a 

picture is placed at the golden mean position between the 
sides and also at the golden mean between top and bottom. 
Take a look at the way in which television pictures are 

composed to see if we still use this idea. 

  

In a similar way, the Ancient Greeks believed that ratio 

determined harmony in music. If two similar strings whose 
lengths bear a simple ratio such as 1:2 or 2:3 are plucked 
together the resulting sound will be pleasant (harmonious). If 

the ratio of string lengths is ‘awkward; such as 17:19, then the 

notes will be discordant. The same principle of simple ratios is 

used in tuning musical instruments (in most cultures) today. 

The most common connection between mathematics and 

other disciplines is the use of mathematics as a tool. Examples 
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are: the use of statistics by insurance actuaries, probability by 

quality control officers and the use of almost all branches of 
mathematics by engineers. Every time mathematics is used 
in this way, there is an assumption that the calculations will 
be done using techniques that produce consistent and correct 
answers. It is here that pure mathematical techniques, applied 

mathematical modelling and other disciplines interface. 

In some of these examples, we apply very precise criteria to our 

calculations and are prepared to accept only very low levels 
of error. Navigation satellite systems work by measuring the 

position of a point on or above Earth relative to the positions 

of satellites orbiting Earth. 

_ Satellite 
e 

  

This system will only work if the positions of the satellites are 

known with very great precision. 

By contrast, when calculationsare made to forecastthe weather, 

whilst they are done with as much precision as necessary, 

because the data is incomplete and the atmospheric models 

used are approximate, the results of the calculations are, at 

best, only an indication of what may happen. Fortunately, 

most of us expect this and are much more tolerant of errors 

in weather forecasting than we would be if airlines regularly 
failed to find their destinations! 

There are, therefore a large number of ways in which 

mathematics complements other disciplines. In fact, because 

computers are essentially mathematical devices and we are 
increasingly dependent on them, it could be argued that 
mathematics and its methods underpin the modern world. 

That is not to say that mathematics is ‘everywhere. Many 

very successful people have managed to avoid the subject 
altogether. Great art, music and poetry has been produced by 

people for whom mathematical ideas held little interest. 

In using mathematical ideas in essays, remember that 
you should produce original examples, look at them in a 

mathematical context and then compare the ways in which 

the example may appear to a mathematician with the way 

in which the same example may appear to a thinker from 

another discipline.



  

As a very simple example, what should we think of gambling? 

To the mathematician (Pascal was one of the first to look at 

this activity from the mathematical perspective), a gambling 

game is a probability event. The outcome of a single spin of 

a roulette wheel is unknown. If we place a single bet, we can 

only know the chances of winning, not whether or not we will 

win. Also, in the long run, we can expect to lose one thirty- 
seventh of any money that we bet every time we play. To the 
mathematician, (or at least to this mathematician) this rather 

removes the interest from the game! 

Other people look at gambling from a different standpoint. 
To the politician, a casino is a source of revenue and possibly 

a focus of some social problems. To a social scientist, the 
major concern may be problem gamblers and the effect that 

gambling has on the fabric of society. A theologian may look 

at the ethical issues as being paramount. Is it ethical to take 

money for a service such as is provided by a casino? Many of 
these people may use mathematics in their investigations, but 
they are all bringing a slightly different view to the discussion. 

As we can see, there are many sides to this question as there 

are many sides to most questions. Mathematics can often 

illuminate these, but will seldom provide all the answers. 
When you choose an essay title, you do not have to use 
mathematical ideas or a mathematical method to develop 

your analysis. However, we hope that if you do choose to do 

this, you will find the brief sketch of the mathematical method 

described in this chapter helpful. 

‘We will finish with one observation. 

Mathematics and mathematicians are sometimes viewed as 

dry and unimaginative. This may be true in some cases, but 

definitely not all. 

We conclude with some remarks by the mathematician 
Charles Dodgson (1832-1898), otherwise known as Lewis 

Carroll: 

“The time has come, the Walrus said, 

“To talk of many things: 

Of shoes and ships and sealing wax, 

Of cabbages and kings, 

Of why the sea is boiling hot 

And whether pigs have wings. 

Through the Looking Glass 

Essays 

‘We would like to encourage students to consider Mathematics 

as a choice of subject for their extended essay. 

Whilst there is a requirement that these have solid academic 

content, it is not necessary to record an original discovery to 
producean excellent essay! Thatsaid, many of the great original 
discoveries of mathematics are the work of comparatively 
young individuals with a modest level of ‘experience’ 

An excellent example is Evariste Galois who struggled to 

enter university and whose life was cut short by a duel in 1832 
at age 21. Galois left a set of ‘memoirs; many of which were 
written on the night before the duel, that are regarded as some 
of the most original ideas ever contributed to mathematics. 

It is fashionable today to regard this 
sort of original thought as the preserve 
of ‘experts. We assert that it is not and 
encourage all our students to believe 

that they are capable of original ideas 

and hope that, if they do have a new 
idea, they have the courage to explore 
it. 

  

Students may choose to look at some of the many simply- 
stated but as yet unproved conjectures of mathematics: 

  
As a short case study, we will outline the work of a student 
who undertook a mathematical essay. The topic she chose was 
“The Mathematics of Knots”. 
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CHAPTER 6 

To begin with, the student displayed an understanding of 

two of the major “ways of thinking” that are characte: 

mathematician. STENCE and CLASSIFICATION. 

ic of     

      

EXISTENCE means developing tests for when a knot does 

or does not exist. It is neither possible nor appropriate to 
explore all these ideas in an introduction such as this, but the 

essentials are illustrated below. 

These look similar, but if the ends are pulled apart, the results 

are quite different: 

!
 

  

The left-hand arrangement was a tangle whereas the right was 
a knot. 

The student investigated and skillfully explained the tests that 

can be applied to such rope arrangements to determine if a 

knot EXISTS. 

  

Sheet bend Bowline 

These knots have two different uses. The sheet bend is used 
to join two lengths of rope and is designed not to slip. The 

bowline (pronounced “bo-lin”) is the knot you tie around 

your waist if you are drowning and a rescuer throws you a 

rescue rope. It will not slip off or tighten around you and, 

irrespective of mathematics, is well worth knowing! 

These knots have different uses and belong to different 

CLASSES of knot. There are knots similar to the bowline that 

are intended to slip (such as the noose) that belong to yet 

another class of knots. What are the classes of knots and what 

  

are their mathematical characteristics? 

Complex numbers 
The term ‘imaginary’ is often applied to the ‘i part of 

a complex number. To what extent are all numbers 
imaginary? 
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It is a common misunderstanding to think that four cars 

parked in a line (which are indisputably ‘real’) are the same 

as the more abstract construct ‘four, which does not only 

apply to the process of counting four cars. Four has a life of 
its own without needing to be used to count things. 

Moving on to the rather more challenging and very 

significant invention of zero (which cannot be used for 
counting), we could look at its invention as necessary to 

s. An example    solve some equations in counting numbe 
  is: Solve x + 7 Similarly, it could be argued that it was 

necessary to invent negative numbers to solve equations 

  

such as: x + 10 = 7. If the coefficients in the equation are 
‘real’ surely the solution must be every bit as real? 

In a similar way, the rational numbers are the solutions to 

equations using counting numbers: 2x = 7 and so must be 

as ‘real’ as 2 and 7. 

  

So what about the irrational numbers? These could be 

viewed as the solutions to equations in numbers that we 

have already discovered and think of as ‘real’: x* = 7. Can 

these be any less ‘real’ than the counting numbers? 

And now we reach the question, ‘Just how real are the 
0’ These numbers 

  

solutions of equations such as: x* + 7 

imaginary than any of the other number 

  

are no more or les 

we use in everyday life 

The question arises: just how far do we need to go in 

inventing new numbers to solve equations? This question 
was answered by the Irish mathematician William 

Hamilton. Hamilton was walking along a canal towpath 
with his wife (other accounts say his dog) when he had a 
‘eureka moment ‘and saw the solution. He then scribbled 

this on a bridge lest he forget it. Hamilton’s answer will 

have to wait until you get to university - but it is worth 

waiting for. The rest of the story may be just ‘blarney’ 
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